Neurodevelopmental copy-number variants: A roadmap to improving outcomes by uniting patient advocates, researchers, and clinicians for collective impact

Commission on Novel Technologies for Neurodevelopmental Copy Number Variants

Summary

Copy-number variants and structural variants (CNVs/SVs) drive many neurodevelopmental-related disorders. While many neurodevelopmental-related CNVs/SVs give rise to complex phenotypes, the overlap in phenotypic presentation between independent CNVs can be extensive and provides a motivation for shared approaches. This confluence at the level of clinical phenotype implies convergence in at least some aspects of the underlying genomic mechanisms. With this perspective, our Commission on Novel Technologies for Neurodevelopmental CNVs asserts that the time has arrived to approach neurodevelopmental-related CNVs/SVs as a class of disorders that can be identified, investigated, and treated on the basis of shared mechanisms and/or pathways (e.g., molecular, neurological, or developmental). To identify common etiologic mechanisms among uncommon neurodevelopmental-related disorders and to potentially identify common therapies, it is paramount for teams of scientists, clinicians, and patients to unite their efforts. We bring forward novel, collaborative, and integrative strategies to translational CNV/SV research that engages diverse stakeholders to help expedite therapeutic outcomes. We articulate a clear vision for piloted roadmap strategies to reduce patient/caregiver burden and redundancies, increase efficiency, avoid siloed data, and accelerate translational discovery across CNV/SV-based syndromes

The Project 8p Foundation (Project 8p) was created in 2018 to:

  • Accelerate future treatments, not only for 8p, but potentially for other chromosome-wide diseases as well.
  • Lead with knowledge from patients. Currently, there is no cure for 8p disorders, nor is there a standard course of treatment.

The Project 8p Foundation (Project 8p) was created in 2018 to:

  • Raise transformative funding for pioneering scientific research into treatments for a complex, rare disease involving 250+ affected genes on the short arm of the 8 th chromosome (8p). Rearrangements of these genes causes significant abnormalities to the entire neurological system, thus all organs and functions of the body– with variance in cognitive functions, gross motor skills, social development and other challenges during infancy, and throughout life;
  • Empower a unified community of 8p patients and their families so they can have meaningful lives today; and
  • Accelerate future treatments, not only for 8p, but potentially for other chromosome-wide diseases as well.