www.nature.com/mp

Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer

R Tabarés-Seisdedos¹ and JLR Rubenstein²

¹Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBER-SAM, University of Valencia, Valencia, Spain and ²Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, CA, USA

Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonproteincoding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.

Molecular Psychiatry (2009) 14, 563-589; doi:10.1038/mp.2009.2; published online 10 February 2009

Keywords: 8p; NRG1; FGF family; schizophrenia; autism; cancer

Introduction

Autism and schizophrenia are complex neuropsychiatric syndromes affecting between 0.3 and 0.6% of children and approximately 1% of the adult world population. These disorders are chronic, debilitating conditions with profound human and economic consequences. Therefore, each discovery that further elucidates disease mechanisms, and each new molecular diagnostic test or therapeutic advance

has the potential to improve the quality of life for many people. 5,6

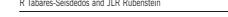
The assumption that neuropsychiatric disorders are phenotypically heterogeneous with overlapping findings suggests the participation of more than one etiological factor and pathophysiological process, some of them being partly shared across the traditional classification categories.^{7,8} Probably, as in human cancers, the heterogeneity in clinical results and treatment outcomes stems directly from the underlying variation in disorder biology.9 It is no wonder then that this remarkable biologic heterogeneity of autism (autism spectrum disorders), schizophrenia (schizophrenias) or bipolar disorder (bipolar spectrum) is intimately related to the complexity of the genetic control of brain development and function. For instance, several of the susceptibility loci and genes in these disorders play a principal role in the development, plasticity and maintenance of the central nervous system (CNS). 10-13 However, the molecular mechanics, the neural

Correspondence: Professor Dr R Tabarés-Seisdedos. Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBER-SAM, Blasco-Ibáñez 17, 46010 Valencia, Spain and Professor Dr John LR Rubenstein. Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, CA 94143, USA.

E-mails: Rafael.Tabares@uv.es and John.Rubenstein@ucsf.edu Received 1 August 2008; revised 19 December 2008; accepted 7 January 2009; published online 10 February 2009

systems and the concepts used are, with few exceptions, excessively vague. 14,15

Recognizing these limitations and approaches, we focus our attention on the 8p chromosome region for several reasons. First, human chromosome 8 spans approximately 145 million base pairs (bp), which represents between 4.5 and 5.0% of the genome. The short arm spans approximately 45.2 million base pairs and only represents 1.5% of the genome, and includes 484 genes (110 pseudogenes). Many of these genes encode proteins that control cell proliferation, apoptosis or both, and may play important roles in several normal and pathological processes such as development or signaling in the CNS and immune response, and cancer and developmental neuropsychiatric disorders, respectively. Currently, it is estimated that there are approximately 41 (8.47%) genes on chromosome 8p involved in the genetic control of cerebral development and function, and approximately 80 (15.53%) genes involved in cancer biology (see Table 1 and Supplementary Table S1 at Supplementary Information). It is important to bear in mind that 8p has lower rates of base pairs and genes than other chromosomal regions with significant linkage to schizophrenia (1q, 6p and 22q), autism (7q and 15q) and bipolar disorder (13q). Only 18p, associated with bipolar disorder risk, has lower rates than 8p (Supplementary Table S2). Although chromosome 8 is typical in several characteristics, such as length, gene or repeat content, a unique feature of this chromosome is a big region of approximately 15 megabases on distal 8p that appears to have a high mutation rate. Likewise, this distal subregion on 8p shows an immense divergence between human and chimpanzee, suggesting that the high mutation rates at distal 8p have contributed to the evolution of the primate brain. 16 Interestingly, a high mutation rate has been associated with high homologous recombination in the human genome.¹⁷ Consequently, an extraordinary recombination rate could increase the duplication genetic process, and allow us a better understanding of the biological connections between 8p, cancer and mental illness at a molecular level.

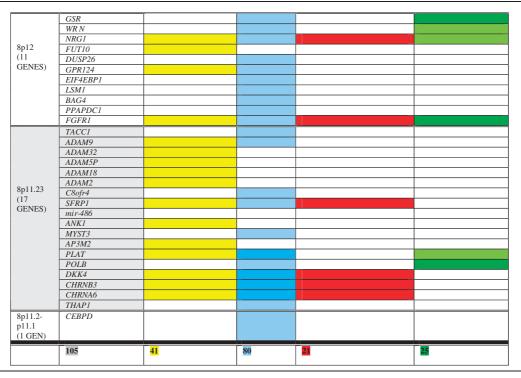

Second, various studies have recently evaluated the contribution of structural variation of DNA (that is, insertions and deletions of DNA, collectively termed copy number variants (CNVs), as well as balanced rearrangements such as inversions) in the human genetic variability and in the susceptibility to common and complex diseases such as cancer, obesity or neuropsychiatric disorders. 18-21 Now, it seems most likely that this structural variation contributes more to genetic diversity in healthy individuals and to phenotypic variation in unhealthy individuals than single-nucleotide polymorphisms.²² Subsequently, chromosomal 8p region is one of the 'hotspot' regions of CNVs in the human genome, because it contains clusters of three to four copy number polymorphisms (Supplementary Table S3). Other regions were 6cen and 15q13-14, which are also related with schizophrenia and autism. 18 Moreover, many of the genes

affected by the identified structural variants encode proteins that have been shown to mediate response to environmental challenge ('environmental sensor genes'), such as immune response, perception of smell and perception of chemical stimuli. 22,23 It is interesting to take note of the presence of olfactory dysfunction in autism²⁴ and schizophrenia subjects.25,26 Furthermore, these neuropsychiatric disorders may be associated with various immune system anomalies. 27,28 The new generation sequencing technologies have detected 343 copy number variations of 146 genes on chromosome 8p. Several of these genes CNVs have been associated with schizophrenia,10 autism spectrum disorders,²⁹ cancer^{21,30} and Crohn's disease³¹ (for updated summary, see Supplementary Table S4). It is noted that, 8p is also enriched in single-nucleotide variants across the entire genome. 32,33 The short arm of chromosome 8p is one of the most enriched regions in structural and singlenucleotide variation across the human genome, but, in any case, little is known about the role of such genetic diversity in disease association.

Third, given that there are genetic factors to schizophrenia and other major neuropsychiatric disorders, the remaining questions are which are the related chromosomal regions and how will the genes be identified?³⁴ In relation to this, 8p is among the best-supported genomic regions implicated in schizophrenia and bipolar risk,35-40 as well as in other important human diseases such as cancer.41,42 For example, the 'Top Results' list of Schizophrenia Gene Database, 43,44 displaying the 27 genes most strongly associated with schizophrenia, includes three 8p genes (1st VMAT1/SLC18A1; 15th NRG1; 26th PPP3CC). It is noted that, it is the chromosome region (arm) with a greater number of schizophrenia susceptibility genes in this ranking. In addition, Bray et al.45 observed that variant(s) within 8p may modulate schizophrenia risk though a transacting effect on dystrobrevin-binding protein 1 (DTNBP1) expression. DTNBP1 is one of the best-supported susceptibility genes for schizophrenia, bipolar disorder and major depressive disorder. 40,46-48 These data provide complementary evidence for chromosome 8p as a neuropsychiatry susceptibility locus.

Fourth, the animal models of human behavioral disorders represent an obvious step forward in the arena of the study of the genetics of behavioral domains. ⁴⁹ We recently described a mouse mutant that lacks the *Fgf17* gene (*Fgf17* is a member of the fibroblast growth factor (*Fgf*) family of genes), which is located in 8p21.3. It has abnormalities in the patterning of frontal cortex (that is, a reduction in dorsal and dorsomedial frontal cortex (FC) and FC projections to subcortical targets, and a rostromedial shift of caudal cortical areas) and social behavior deficits. ^{50–52} Thus, this type of developmental lesion may be a relevant mechanism for some forms of autism, schizophrenia and related syndromes.

From these observations, it is reasonable to expect that 8p chromosome, as a whole, could be a



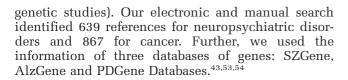
LOCUS	GENE SYMBOL	CEREBRAL DEVELOPMENT AND FUNCTION	CANCER	NEUROPSYCHIATRIC DISORDERS	*CEREBRAL DISORDERS
8p23.3	DLGAP2	AND FUNCTION			
(4	CLN8				
GENES)	mir-596				
	ARHGEF10				
2-22.2		1			
8p23.2 (1 GENE)	CSMD1				
(1 GLIVE)	DEFB103A		I I		
	MCPH1				_
	ANGPT2				_
	DEFB1				
	DEFA6				
	DEFA1				
3p23.1	DEFA3				
(18	DEFB4				
GENES)	CLDN23				
	MFHAS1				
	mir-597				
	mir-124-1				
	MSRA				
	SOX7				
	PINX1				
	mir-598				
	GATA4				
	CTSB				
	DLC1				
	mir-383				
	TUSC3				
	MSR1				
8p22	FGF20				
(10	PDGFRL				
GENES)	MTUS1				
	PCM1				
	NAT1				
	NAT2	Ì			
	PSD3				
	ChGn				
	LPL				
	VMAT1/SLC18A1				
	LZTS				
	GFRA2				
	DOK2				
0-21.2	NPM2				
8p21.3 (21	FGF17				
GENES)	mir-320				
OLI (LS)	PIWIL2				
	PHYHIP				
	PPP3CC				
	KIAAA967				
	BIN3				
	EGR3				
	PEBP4				
	RHOBTB				
	TNFRSF10C				
	TNFRSF10D				
	LOXL2	1			
	NKX3-1				
	STC1				
	ADAM28				
	ADAM7				
3p21.2	NEF3 NEFL				
13	GNRH1				
GENES)	BNIPEL				
	PNMA2				
	DPYSL2				
	ADRA1A				
	PTK2B			CNVs	
	CHRNA2			22, 13	
	CLU				
	SCARA3				
	PBK PNOC				
3p21.1	ZNF395				
9	FZD3				
GENES)					
	EXTL3 HMBOX1				
	KIF13B				
	MITIJD				

Table 1 8p Genes involved in cerebral development, cancer, neuropsychiatric and brain disorders

Table 1 Continued

^{*}Cerebral Disorders such as Epilepsy, Alzheimer Disease, Parkinson Disease, Down Syndrome and others. Abbreviation: CNVs, copy number variants (see Ref. 10).

Total number of genes on chromosome 8p = 484; genes involved in cancer = 80 (15.5%); genes involved in neuropsychiatric disorders = 21 (4.3%); genes involved in cerebral development and function = 41 (8.5%); genes involved in brain disorders = 25 (5.2%).


significant opportunity to explore the relationship among candidate genes, several neuropsychiatric disorders and other human diseases, including cancer, Parkinson's disease and Alzheimer's disease, and to define new pathophysiology pathways.

Therefore, the main goal of this review is to carefully provide a brief overview of previous findings that support the role of 8p not only in genetic susceptibility to neuropsychiatric disorders but also to human cancer. Moreover, we aimed to analyze 21 candidate genes (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LPL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) from a total of 484 genes located in this region, that may lead to expression of different neuropsychiatric phenotypes, ranging from autism to schizophrenia to affective disorders. They were identified by a systematic review in PubMed and in the SchizophreniaGene (SZGene),⁴³ AlzheimerGene (AlzGene)⁵³ and Parkinson's Disease (PDGene)54 Databases, supplemented with a manual search of reference lists. These genes are likewise involved in the relevant metabolic pathways and some aspects of the neural development. In addition, there are seven microRNAs (miRNAs) located on the short arm of chromosome 8. Two of these nonprotein-coding RNAs (hsa-mir-124-1 and hsa-mir-320) are most likely to

be critical in the CNS development and in various human disease states.⁵⁵ We also present a new developmental animal model that establishes a relationship between a gene of this region (*Fgf17*) that mediates the patterning of frontal cortex, and specific components of social behavior. Finally, we discuss the pertinence of 8p to understand the biological connections between neuropsychiatric disorders and cancer.

Chromosome 8p, neuropsychiatric disorders and cancer

In recent years, as mentioned above, many studies have identified a number of liability genes for major neuropsychiatric disorders and other serious human diseases, such as cancer, that are located on chromosome 8p. Then, an electronic search covering the period 1963–July 2008 was conducted using Medline database, supplemented with a manual search of reference lists. The diagnostic terms autism (and related disorders such as Asperger syndrome, Fragile X mental retardation, Rett syndrome, Tuberous Sclerosis Complex), schizophrenia, bipolar disorder or manic depression, depression and cancer were combined with keywords indicating chromosomal relationship and genetic analysis (chromosome 8, 8p chromosome, 8p genes, linkage and association

Cytogenetic studies

Kallmann's syndrome. The study of rare chromosomal or karyotypic abnormalities provide critical information about the localization of disease genes.³⁴ The region discussed—8p—is involved in microdeletions that are present in individuals with the Maestre de San Juan-Kallmann-de Morsier syndrome. 56 This is a congenital disorder of hypothalamic function and reduced pituitary gonadotropic activity with resulting association of hypogonadism, eunuchoidism and anosmia (or hyposmia). Anosmia is caused by a migration disturbance that affects the axon projections of olfactory neurons to brain. Franz Josef Kallmann^{57,58} was one of the first psychiatrists to study the genetic basis of mental disorders, and he reported some cases of schizophrenia and mental retardation in individuals with this syndrome. More recently, Cowen and Green⁵⁹ have drawn attention to some parallels between schizophrenia and Kallmann's syndrome, including the fact that olfactory dysfunctions (that is, smell identification deficits) are present in a subgroup of patients with schizophrenia. 60 Versiani et al. 61 also confirm the association of Kallmann's syndrome and schizophrenia, and abnormalities of cognition and behavior such as learning disabilities. However, other authors consider that this association is rare and confined to olfactory dysfunction.62

Autism and other related syndromes. There are several clinical reports associating chromosomal (p21-23, 8p p12-23, p12-21.2) rearrangements (that is, translocations, inversions, deletions, duplications) with autism (reviewed by Papanikolaou et al.63). It is noted that the autistic patients of these cytogenetic studies have milder phenotypes than other reported cases abnormalities in other chromosomes. These bands might represent a critical region for social and communication deficits indicating an autism spectrum disorder, unrecognized until 3 or more years and with a negative family history of autism. 64

In a Finnish population sample,65 there is also evidence that 8p anomalies are associated with mental retardation epilepsy. The patients with mental retardation epilepsy are distinguished from the majority of epilepsy cases in that they suffer mental deterioration following the onset of seizures. Moreover, the degree of mental deterioration correlates with the severity of cerebral atrophy.66 Autism includes a high prevalence of mental retardation, with rate estimates of 40-55% or higher, 67 and comorbid epilepsy, observed in approximately 30%

of autistic subjects.68 Furthermore, the occurrence of schizophrenia-like symptoms and secondary affective symptoms has been shown in patients with epilepsy. 69 Even more interestingly, a family history of epilepsy is a significant risk factor for schizophrenia.⁷⁰

Aberrations in the short arm of chromosome 8 may also be a relatively common cause of corpus callosum malformations.⁷¹ Moreover, 8p21-p23 is a suitable candidate locus for agenesis of the corpus callosum.⁷² The association of corpus callosum anomalies with cognitive deficits, epilepsy, autistic-like behavior or schizophrenia-like symptoms is relevant and well known. 73 Finally, several recent studies have detected novel submicroscopic 8p abnormalities using a new generation of microarray analysis. For example, Butler *et al.*⁷⁴ using an array comparative genomic hybridization analysis in Prader-Willi syndrome, detected that most Prader-Willi syndrome subjects had CNVs on 8p and 3q. The autistic-like symptomatology in Prader-Willi syndrome⁷⁵ and the association with schizophrenia and affective psychosis⁷⁶ are also well known.

Cancer. Despite 8p being a relatively small chromosome arm, it is one of the most frequently altered genomic regions in human cancer,41 and is also rich in candidate oncogenes and tumorsuppressor genes associated with the development of certain types of cancers (see Table 1 and TS1 at Supplementary Information). The high frequency of cytogenetic aberrations and genomic rearrangements (principally deletions and translocations) affecting 8p in lung and prostate cancers suggests that this region may harbor potential candidate genes involved in the pathogenesis of these types of cancer. 77,78 However, the loss of heterozygosity involving 8p is also a common feature of the malignant progression of others, including breast cancer,⁷⁹ gastric cancer,⁸⁰ colorectal cancer,⁸¹ bladder carcinoma⁸² and hepatocellular carcinoma, especially during metastasis.83

In spite of several methodological issues and heterogeneous results, the epidemiological studies of the relationships between schizophrenia and cancer detected a reduced incidence of cancer observed in patients with schizophrenia compared with the general population (reviewed by Catts and Catts,84 Jablensky and Lawrence,85 Grinshpoon et al. 86). It is intriguing that two rigorous populationbased studies found a significantly lower risk of respiratory and prostate cancer in people with schizophrenia and their relatives compared with people without schizophrenia after adjustment for confounder variables.87,88 More recently, the first meta-analysis of cancer incidence rates in patients with schizophrenia, their parents and siblings has been published.⁸⁹ Catts et al.⁸⁹ report a discrepancy between cancer risk exposure and cancer incidence schizophrenia, consistent with a possible genetic protective effect. Although other possible

explanations may be involved (that is, epidemiological bias, cancer-protective effect of classical antipsychotic medications, obstetric complications and lifestyle differences), 90-92 the authors propose that the genetic predisposition toward schizophrenia confers genetically reduced susceptibility to cancer.

In contrast with schizophrenia, few studies have explored in detail the cancer rates in patients with autism, bipolar disorders or other neuropsychiatric disorders. However, the co-occurrence of autism spectrum phenotype and tuberous sclerosis complex has been recognized for decades.93 Tuberous sclerosis complex is an autosomal dominant inherited disorder characterized by benign tumors that form during the development (hamartomas) in various organs such as brain (known as tubers). These brain lesions are associated with epilepsy, cognitive disability and autism. 94 Despite the presence of several factors among patients with bipolar disorder that might affect the risk for cancer (that is, diet, smoking and medications), several studies found a nonsignificant statistical risk for cancer.87,95 Likewise, Carney and Jones⁹⁶ in a population-based controlled study found that hyperlipidemia, lymphoma and metastatic cancer were the only medical conditions less likely to occur in persons with bipolar disorder. More recently, BarChana et al.97 found an enhanced risk for cancer among patients with bipolar disorders. However, the risk for breast cancer was higher, but not significantly, than in the general female population. Then, no firm conclusions could be drawn.

On the basis of these clinical and cytogenetic findings, there is some evidence supporting 8p as a schizophrenia/autism overlap risk region. Curiously, the autistic patients with 8p rearrangements might have a benign clinical presentation compared with other autistic cases with abnormalities in other chromosomes. In addition, the same genetic factors located in this chromosomal region might induce cancer in the general population, but have also a possible protective effect for lung and prostate cancer in individuals with schizophrenia and their relatives. In this respect, 8p may represent a landmark for the identification and cloning of genes involved in cancer, schizophrenia and others.

Linkage studies

Linkage studies have provided evidence for one or more loci in the 8p region that influence susceptibility to several neuropsychiatric phenotypes.

Schizophrenia. The seminal study of Pulver et al.³⁵ and three independent investigations have reported logarithm of odds (LOD) scores above 3.0^{38,98,99} and another four have confirmed a LOD score above 1.5.^{36,38,100,101} Moreover, this region is supported by the results of published meta-analyses of schizophrenia linkage studies.^{102,103} However, a published study has not been able to find significant evidence for linkage on 8p region.¹⁰⁴ It is important to take into consideration that Kendler et al.¹⁰⁵ found an

association between 8p22-21 locus and some clinical features in 265 multiplex schizophrenia pedigrees. More specifically, affected individuals from families with evidence of linkage to 8p had significantly more affective deterioration and thought disorders, a worse outcome, and fewer depressive symptoms than affected individuals from the other families in the study. Furthermore, Chiu *et al.*¹⁰⁶ have also shown that schizophrenia susceptibility appears to be associated with 8p21 region in some families, where the affected siblings are more likely to have experienced bizarre delusions, attendance to a special school, affective symptoms early in the course of illness and seizures.

Affective disorders. Although chromosome showed no evidence of linkage in a genome-wide linkage scan study of schizophrenia and bipolar people, 102,107 five genome scan studies and one of the two published meta-analyses supports this region in bipolar disorder. 108-113 Indeed, the psychotic bipolar disorder subtype was further studied in a genome-wide linkage analysis of 40 extended bipolar pedigrees (only subjects with psychotic features were considered affected), and the two strongest regions in the genome were 9q31 and 8p21.112 These findings are additionally supported by a new genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health (Genetics Initiative) that found a suggestion of linkage (8p22) for bipolar patients with psychotic symptoms. 114

In major depression, the 8p region is supported by two genome-wide linkage studies with partially shared samples of families with two or more probands of early-onset recurrent major depression. 115-117 Zubenko et al. 116 reported a positive association between a history of suicide attempts and several chromosomal regions. It is noted that the highest Δ LOD score (Δ LOD = 5.08) was located at 8p22-p21 (D8S1145; 37.0 cM, 18.2 Mbps, P < 0.0001). It is relevant to take into account that suicide is a prevalent outcome of neuropsychiatric disorders, and that repetitive, self-injurious behavior may appear in individuals with autism or related disorders. 118,119 The other positive linkage was observed in a secondary analysis after Holmans and colleagues¹¹⁷ controlled for the sex of affected pair. Their results suggest that the contribution of 8p loci may be sex dependent, and that 8p contains genes that contribute to susceptibility to severe and persistent episodes of depression.

Other neuropsychiatric disorders. Other linkage analyses have also shown linkage of other neuropsychiatric disorders and developmental cognitive deficits to chromosome 8p. Subsequently, the region has been implicated in reading disability or developmental dyslexia in individuals with attention-deficit/hyperactivity disorder, ¹²⁰ anxiety-related personality traits such as harm avoidance and neuroticism, ^{121–123} late-onset Alzheimer's disease, ¹²⁴

Alzheimer's disease with positive late-onset symptoms of psychosis¹²⁵ and idiopathic late-onset Parkinson's disease. 126 In contrast with these disorders, there has been no strong evidence for linkage on chromosome 8p in any of the genome-wide linkage studies of autism. 127,128 Only one linkage analysis on multiplex autism families stratified according to delayed expressive speech found higher linkage signals in the delayed groups for some loci on chromosome 8p. 129

Given this linkage scenario, chromosome 8p should be considered as a robust candidate for a susceptibility region for schizophrenia especially with clinical features that bring to mind the classical dementia-praecox syndrome described by Emil Kraepelin. 130 In addition, there is suggestive evidence for bipolar disorder with psychotic symptoms, major depression with recurrent episodes and suicide attempts, and specific anxiety-related personality traits such as neuroticism and harm avoidance, but insufficient evidence for other neuropsychiatric phenotypes, including autism, Parkinson's disease and Alzheimer's disease. It is noteworthy, therefore, that the 8p arm appears to increase the probability that several major neuropsychiatric disorders will show higher levels of affective severity, suicidal behavior, psychotic symptoms and poor outcome. Some aspects of this clinical variability concur in part with deficits in social cognition. 119 Nevertheless, on the basis of 8p linkage findings, at least some risk genes affect, in part, the expression of specific phenotypes across the nosological boundaries.

Studies of individual genes: association, gene expression and endophenotype investigations

To our knowledge, there are 484 genes located on 8p (for exhaustive and update information about their localization and description—locus, bases, names, ID, MIM, type and ontology: functions, processes and components—see Supplementary Table S1 at Supplementary Information section). In recent years, as mentioned above, many studies have identified several susceptibility genes for schizophrenia and other neuropsychiatric disorders that are located on chromosome 8p. Specifically, our electronic and manual search identified 19 potential candidate genes from association studies. Following the first recommendation (broad view) proposed by Lohmueller et al.131 to reduce false positive associations, we consider those associations that have been replicated at least once with an independent sample. Nine genes located on 8p satisfy the criteria of Lohmueller et al.¹³¹: DPYSL2, EGR3, FGF20, FZD3, LPL, NAT2, NRG1, PPP3CC and VMAT1/SLC18A1. We also consider the current state of evidence for 11 additional candidate genes that do not satisfy the Lohmueller et al. criteria, but have a significant association in only one study: ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, FGFR1, NEF3, PCM1, PLAT and SFRP1. Finally, we consider three additional genes as other potential candidate genes on

8p chromosome from molecular genetics and cerebral developmental studies: FGF17, hsa-mir-124-1 and hsa-mir-320.

Table 2 summarizes the published findings about 8p genes in neuropsychiatric disorders, highlighting results that show the relationship among this candidate genes and a number of normal and pathological conditions, such as neurodevelopmental processes, gene expression in the CNS and in the peripheral sources of patients, endophenotype investigations, experimental disease models and cancer research. 132-345 Other 14 genes located on 8p (ADRB3, BIN3, CLU, CTSB, EPHX2, GNRH1, NAT1, NEFL, PDLIM2, PEBP4, PIWIL2, PNOC, SLC39A14, SORBS3 and WRN) were investigated in at least one study that did not show association with neuropsychiatric disorders (see Ref. 43,53,54).

A developmental animal model from 8p: potential implications for autism, schizophrenia, affective disorders and cancer

Numerous studies have reported that social cognition impairments, especially deficits in theory of mind, emotion perception and social perception, are a core of autism and schizophrenia. 346-348 Although the molecular and cellular mechanisms underling social cognitive deficits have not been clarified, recent studies have linked social dysfunction changes in rodents to neurodevelopmental abnormalities associated with autism, 349 depression and schizophrenia,³⁵⁰ and Rett syndrome.³⁵¹ More specifically, genes involved in neurodevelopment are essential for normal social behaviors. Fgf are particularly interesting in this regard. Fgf genes encode a family of 22 signaling molecules, which signal through at least four FGF receptors, play a central role in development and in tissue homeostasis. 158,159 Blocking Fgf receptor signaling by expressing a dominant-negative Fgf1R receptor during embryonic development resulted in decreased cortical thickness. 160 Expressing the dominant-negative Fgf1R in dopamine neurons reduced the number of dopamine neurons, increased dopamine levels in the striatum and impaired prepulse inhibition,352 changes which may have relevance to the neuropathology and sensorimotor gating deficits in schizophrenia. 353,354 Moreover, FGF20 at 8p21.3-22 was identified as a risk factor for Parkinson's disease. 161-164 Likewise, Murase & McKay 168 showed, in vitro experiments, that FGF signals (specifically, FGF20 and FGFR1) to elevate dopamine levels and protect the specific midbrain neuron type. Because Parkinson's disease is characterized by loss of midbrain dopaminergic neurons, it is possible that altered FGF-signaling might have permanent effects on CNS function by the dopaminergic nigrostriatal system.355,356

FGF-signaling defects are also linked to major depression. Two recent postmortem analyses, showed a reduction, on the one hand, of FGF members (FGF1. FGF2, FGFR2 and FGFR3) in the frontal cortex of

ith neuropsychiatric disorders and investigated in several domains	
'able 2 List of candidate 8p genes associated with	

_					
	Commentaries	The pm "2236T>C in the 3' untranslated region of the <i>DRP-2</i> gene has been shown to be a negative genetic risk factor for paramoid-type schizophrenia. ¹⁴¹ Flowever, Hong et al. ¹⁴² Flowever, Hong et al. ¹⁴² Flowever, Hong et al. ¹⁴³ Flower, Schizophrenia. ¹⁴⁴ PMeta-analysis of all published SZ- association studies (4 cCS) for rst7666 ("2236T>C) pm (OR (95% CI) = 1.06 (0.68, 1.65))	There are only two published studies that have reported involvement of <i>EGR3</i> in neuropsychiatric disorders. The findings to date need to be confirmed by replication in other populations and methods	^b Meta-analysis of all published PD- association studies (4 CCS) for rs1989754 pm (OR (95 % CI) = 1.04 (0.86, 1.27))	¹⁷ Three meta-analyses of the published SZ-association studies: 5 CCS for rs960914 pm (OR (95% CI) = 0.91 (0.77, 1.08)) 6 CCS for rs2241802 pm (OR (95% CI) = 0.98 (0.89, 1.07)) 4 CCS for rs352203 pm (OR (95% CI) = 0.94 (OR (95% CI) = 0.94 (OR (95% CI))) Using a mathematical
	Cancer	Cancer: Goulet et al. ¹⁵⁰ found an increase of DPYSL2 expression in HCT116 colon cancer cells treated with selenomethionine, which is an anticancer drug. This finding suggests that DPYSL2 could play a functional role in the growth inhibitory effects of selenomethionine	Cancer: Suzuki et al. ¹⁸⁷ showed an estrogen- mediated induction of EGR3 in breast carcinoma cells. EGR3 also plays an important role in estrogen-meditated independent prognostic factor in breast carcinoma	Cancer: members of the Fgf family are associated with a variety of human cancers ^{109–171} <i>FGF20, JAG1</i> and <i>DKK1</i> are target genes of the Wnt-catenin signaling cascade ¹⁷²	Cancer: Wnt path wayrelated genes are associated with cancer. The for instance, Frizzled could play a role in the invasive migration of melanoma cancer cells through noncanonical Wnt5a signaling pathway. The FZD3 exhibited significantly increased related general significantly increased
	Other studies (endophenotype investigations, disease models, case reports)	SZ. DPYSL2 is associated with paramoid type but not with hebephrenic schizophrenia ⁻¹¹ DM. Deregulation of DPYSL2 expression in the brain upon aging of transgenic mouse models of AD ¹⁴⁶ DM. DPYSL2 is a marker for escitalopram resistance in stress model of depression ¹⁴⁷ CR. Several clinical studies have described a variety of neurodevelopmental abnormalities in subjects with defects of DPYSL2 ^{146,149}	DM: Evidence for support a role for BDNF as the mediator of EGR3-induced GABRA4 regulation in developing, neurons and epilepsy ¹¹⁻⁸ . DM: EGR3- ¹⁻⁴ mice display abnormalities in social and aggressive behavior, and defects in synaptic plasticity, ¹¹⁵ The aggression of EGR3- ¹⁻⁴ mice was reversible by treatment with clozapine, an antipsychotic drug ¹¹⁶	DM: Murase and McKay ¹⁰⁸ showed, <i>in vitro</i> experiments, that <i>FGF</i> signals (specifically, <i>FGF20</i> and <i>FGFR1</i>) to elevate dopamine levels and protect the specific midbrain neuron type	DM: Inactivation of Fz3 in mice causes the absence of, or a great reduction in, several axon tracts, including the anterior commissure, corticospinal tract, corpus callosum, formix, thalamocortical and corticothalamic tracts, stria medullaris, stria terminalis and hippocampal commissure. Thus, Frizzled3 plays an important
)	Negative studies	SZ; 2 CCS ^{142,137} BD: 1 CCS ¹⁴⁴ METH psychosis: 1 CCS ¹⁴⁸		PD: 2 CCS ^{105,106} SZ: 1 CCS ¹⁰⁷	SZ: 4 CCS ¹⁰¹⁻¹⁰⁴ SZ: 3 FBS ^{101,105,106} BD: 1 CCS ¹⁰³ MD: 1 CCS ¹⁰³
	Positive studies	SZ; 2 CCS' ^{41,142} SZ; 1 FBS' ⁴³ BD: 1 FBS' ⁴³	SZ: 1 CS ¹¹²² SZ: 1 FBS ¹¹²²	PD: 1 CCS¹ ^{10.1} PD: 3 FBS¹ ^{10.2−164}	SZ; 2 CCS ^{178,179} SZ; 1 FBS ¹⁸⁰
,	Expression in the CNS and in peripheral sources of patients	SZ: Increase of <i>DPYSL2</i> in the hippocampus. ³⁴ SZ+BD+MD: the expression of <i>DPYSL2</i> is decreased in the FC, ¹³⁵ and in the ACC' ¹³⁶ and in the ACC' ¹³⁷ SZ: no differences in <i>DPYSL2</i> expression at lymphocytes. ³⁷ AD: Decrease of <i>DPYSL2</i> in the hippocampus. ³⁸ DS: bysregulation of <i>DPYSL2</i> protein and decrease of mRNA in brain. ^{333,40}	SZ + BD: EGR3 mRNA levels were decreased in the DLPFC of schizophrenic, but not bipolar subjects. Expression of EGR3 was significantly lower in the hippocampus of schizophrenic smokers compared with control smokers ¹⁵³		BD: FZD3 mRNA levels were decreased in the orbitofrontal cortex of bipolar subjects ¹⁷⁶ BD: FZD3 has been identified as a biomarker for high mood in whole-blood (predominantly lymphocytes) samples ¹⁷⁷
) •	Neurodevelopmental (or biological) process	DPYSL2 is an important molecule in neurite outgrowth and in neurite degeneration, and is expressed in the developing and adult nervous systems ^{132,133}	ECR3 is a zinc-finger transcription factor and plays important roles in cellular growth and in neuronal development. For example, ECR3 may be a critical regulator of endogenous GABRA4 during development. ¹⁵¹	$F\!g\!f$ genes play a central role neuronal development $^{138-160}$	Wnt-Fz is a ligand-receptor pair with a conserved role in neuronal process development. For example, FZD3 activity mediates Wnt-dependent neurogenesis and neurite outgrowth 172 - 173
	Gene symbol position	$BPYSL2$ $8p21.2^a$	<i>BGR3</i> ° 8p21.3	<i>FGF20</i> ° 8p22	<i>FZD3</i> ° 8р21.1

571

ned
Contin
Table 2

		<u> </u>	abarés-Seisdedos and JLR Rubenstein	
Commentaries	approach for testing genetic epistasis underlying complex diseases, <i>Kung et al.</i> ¹¹ ¹² ¹² ¹³ ¹⁴ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵	PTwo meta-analyses of the published AD- association studies: 3 CCS for rs320 (HindIII) pm (OR (95% CI) = 0.73 (0.59, 0.9)) 5 CCS for rs328 (S447Ter) pm (OR (95% CI) = 0.83 (0.88, 1.04))		SZ: Three published meta-analyses showed a strong positive association for six pm and the at-risk haplotypes in NRG1 with schizophrenia ^{201–204} bEight meta-analyses of the published SZ-association studies:
Cancer	expression in patients with ulcerative colitis ¹⁹³	Cancer: Thomassen et al. ²⁰⁰ suggest that LPL and EPHX2 at 8p21-22 are candidate metastasis suppressor genes in breast cancer. LPL was found to be promising biomarker candidates for the detection of hepatocellular carcinoma. ²¹⁰ LPL deletion is associated with prostate cancer.	Cancer: The <i>NAT2</i> slow acetylator phenotype is associated with an increased risk of bladder cancer (owing to decreased detoxification of carcinogens from tobacco smoke), but has been associated with decreased risk of colorectal cancer (owing to reduced activation of carcinogens), 223 <i>NAT2</i> with other cancers such as brain tumors, prostate cancer, bladder cancer and breast cancer and breast cancer.	Cancer: Overexpression of NRG1 is found in many different cancer types and correlates with cancer progression and an aggressive phenotype. ²⁴⁰ Overexpressed NRG1 in cancers may function as oncogenes and promote cancer development by
Other studies (endophenotype investigations, disease models, case reports)	role in outgrowth and/or guidance axonal ^{187,188}	Lipoprotein lipase gene might influence in the differential lipid response to treatment with antipsychotic drugs ²⁰⁰ . Decreased lipoprotein lipase as a risk factor for atypical neuroleptic-induced hypertriglyceridemia ²⁰⁷ . Relation between gene of lipoprotein-lipase and life duration in patients with chronic cerebral ischemia ²⁰⁰ .	Variants in NAT2 are associated with the risk to develop systemic lupus erythematosus ²²⁴	SZ+SZ-Rel: Gruber et al. 2155 found a link between NRG1 genetic variation and hippocampal volume reductions in schizophrenic patients and nonaffected relatives (SMRI) SZ: Specific NRG1 risk allele was associated with poorer premorbid social functioning and with the
Negative studies		AD: 6 CCS ^{108, 201–205}	AD: 3 CCS ^{223–225} AD+PD with Dementia ²²⁶ PD: 6 CCS ^{227–222} PD: 1 FBS ²²³	SZ: 10 published CCS (see Ref. 43) SZ: 9 FBS (see Ref. 43) BD: 3 FBS ^{143,253,253} AUT: 1 FBS ²⁵⁴
Positive studies		AD: 6 CCS ^{195,197-200}	SZ: 1 CCS ²¹² AD: 2 CCS ²¹³⁻²¹⁴ PD: 8 CCS ²¹⁵⁻²²²	SZ: 19 published CCS (see Ref. 43) SZ: 11 FBS (see RP: 33 RP: 33 CCS ²⁴⁰⁻²³¹ BD: 1 FBS ²⁵¹ ADP: 1 FBS ¹²⁵
Expression in the CNS and in peripheral sources of patients		AD: a common polymorphism in the lipoprotein lipase gene modulates the risk level for sporadic AD in the eastern Canadian population but more importantly, indirectly modulates the pathophysiology of the brain in autopsy-confirmed cases ¹³⁵ SZ: changes in LPL expression in the DLPPC of schizophrenic subjects ¹³⁶		SZ. Type I NRG1 mRNA was found to be upregulated in the DLPFC and in the DLPFC and in the hippocampus of patients. 2412 hippocampus of patients 1412 hippocampus of all 241 showed that Type I NRG1 expression positively correlates with antipsychotic medication dosage. SZ. NRG1-ICD protein levels were increased in prefrontal
Neurodevelopmental (or biological) process		LPL is one gene involved in lipid metabolism ¹⁸⁰ LPL plays an important role in the modifiability of neuronal response plasticity "Metaplastic control" ¹⁸⁴	NAT2 is one of two N-acetyl transferase isoforms expressed in humans, which are involved in the detoxification of heterocyclic or aromatic amines and their metabolites ²¹²	NRG1 is the member of a family of proteins that exert a key role in neurodevelopmental processes and synaptic plasticity, including neuronal migration and specification, oligodendrocyte development, and regulation of acetylcholine, GABA and glutamate ^{237–239} Specific genetic variation in NRG1 is associated with reduced white
Gene symbol position		<i>IPL</i> 8р21.3	NAT2 8p22	$NRGI^a$ 8p12

Table 2	Continued		:	:	:		
	Neurodevelopmental (or biological) process	Expression in the CNS and in peripheral sources of patients	Positive studies	Negative studies	Other studies (endophenotype investigations, disease models, case reports)	Cancer	Commentaries
	matter density and connectivity in the anterior limb of the internal capsule of human brains using $DTT^{\mu\nu}$	SZ. Evidence of increased NRG1 signaling and/or function was found in the prefrontal cortex of patients. SZ. Petryshen et al. 245 reported an increased expression of SMDF, a type II isoform, in the PBLs of patients compared with their unaffected siblings SZ. NRG1 mRNA expression in PBLs was also lower than that in siblings and healthy controls. This expression was gradually increased in antipsychotic treated patients. SZ. NRG1 GGF2 isoform showed a lower expression in immortalized lymphocytes of SZ patients before and after olarazpine stimulation. In contrast, NRG1 GGF isoform showed no significant difference between patients and unrelated-family controls. SZ PBD+MD: Bertram et al. 240 fb.			different trajectories of change in lobar volumes of COS subjects, using SMRP ²⁴⁶ SZ. Specific NRG1 risk allele predicts conversion to psychosis, abnormal activation of frontal and temporal lobes, and cognitive impairment in individuals at high genetic risk of schizophrenia. ²⁴⁹ BD + SZ. Green et al. ²⁴⁹ BD + SZ. Green et al. ²⁴⁹ BD + SZ. Green et al. ²⁴⁰ fround that variations in NRG1 may exert a specific effect in bipolar subjects with mood-incongruent psychotic features, as well as in schizophrenia cases that had experienced mania. Similar findings have been found by WalsaBas et al. ²⁴⁸ BD + SZ. A new NRG1 marker risk was associated with a 'typical" bipolar 1 phenotype characterized by excellent recovery between episodes and no mood incongruent psychotic features. ²⁴¹ DM: NRG1 knockout mice exhibited hyperactivity and defects in social interaction domain (aggressive behavior and behavior response to social novelty) rather than in emotional/amxiety	regulating tumor suppressor genes and/or genes that control cell differentiation or apoptosis. ²⁰¹ Cancer: also see Discussion section	4 CCS for rs10503929 pm (OR (95% CJ) = 0.87 (0.79, 0.97) 19 CCS for rs35753505 (SNPRNRC221533) pm (OR (95% CJ) = 1.04 (0.96, 1.12) (51.12) (6.02 for rs3924999 (Gln38Arg) pm (OR (95% CJ) = 0.96 (0.88, 1.04)) 4 CCS for rs473376 pm (0.94, 1.24) (0.94, 1.24) (0.94, 1.13) 4 CCS for rs6994992 (SNP8NRG243177) pm (OR (95% CJ) = 1.01 (0.04, 1.10)) 4 CCS for rs6994992 (OR (95% CJ) = 1.01 (OR (95% CJ) = 0.92 (OR (95% CJ) = 0.92 (OR (95% CJ) = 0.95 (OR (95% CJ) = 1.04 (OR (95% CJ) = 1.04
	PPP3CC is expressed in the rodent brain (hippocampus and cerebellum). The data suggest a potential importance of calcineurin in neurodevelopment. 265 Calcineurin may play important roles in neuroplasticity and neuronal adaptation. 266 Calcineurin has been implicated in neurodegenerative disorders. For instance, in PD ²⁶⁸	SZ. PPP3CC mRNA levels were decreased in the hippocampus of schizophrenic patients. 2009 SZ + BD: PPP3CC mRNA levels in the DLPFC did not differ among schizophrenics, bipolar and controlls. 270. No significant differences were found in PPP3CC protein levels either in the prefrontal or in the hippocampus of schizophrenia patients compared with matched control subjects. 271 SZ. Expression of PPP3CC gene in the whole-blood sample was not altered in patients with schizophrenia relative to control subjects. 272 Expression of PPP3CC gene in the whole-blood sample was not altered in patients with schizophrenia relative to control subjects. 272	SZ; 2 CCS ^{273,274} SZ; 2 FBS ^{270,75} BD: 1 CCS ²⁷⁰	SZ: 3 CCS ²⁷⁷⁻²⁷⁶ SZ: 2 FBS ^{143,278} BD: 1 FBS ¹⁴³	DM: CNB knockout mice exhibited increased locomotion, defects in social interaction, impaired prepulse and latent inhibition, and severe working episodic-like memory deficits. These behavioral abnormalities reminiscent of both schizophrenia and bipolar phenotype, seozan Sz. variations on PPP3CC gene, including re2461491, showed significant associations with the subgroup of schizophrenia with deficits of sustained attention and the executive functioning (CPT, WCST) ²⁷⁸	Cancer: Expression of PPP3CC was significantly downregulated in prostate cancer and in recurrent prostate cancer ^{203,204}	^b Meta-analysis of all published SZ- association studies (5 CCS) for rs2461491 pm (OR (95% CI) = 1.06 (1.01, 1.12))

Continued	
7	
le	
ab]	
La	

				Trabares-ocisaed	dos and JEN Nuberistein	
	Commentaries		bMeta-analysis of all published SZ-association studies (4 CCS) for rs2270641 (A277C) pm (QR (95% CJ) = 1.63 (1.03 .2.57)) AX: 5 positive linkage studies/2-12.27 Two SZ-association studies found a genderby-genotype effect for SZ ²²⁸ and for AX ²²³ significant differences were observed in females, but not in males			The significant association did not areach gene-wide significance after correction by permutation. 312 New evidence reinforces interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.
	Cancer		Cancer: VMAT1 might be related with human neuroendocrine tumors, such as endocrine tumors of the gastrointestinal tract and pancreas ²⁰⁰	Cancer: The selective α, adrenergic receptor antagonist doxazosin (Dox) has been reported to inhibit prostate cancer proliferation ³¹⁸ Dox treatment inhibits proliferation and induces apoptosis in breast cancer cells <i>in vitro</i> ³¹⁹	Cancer. Alteration in the expression pattern of <i>ARHGEF10</i> in retinoblastoma tumors ³⁰⁰	Cancer: Mesothelioma cells growth is modulated by the cholinergic system in which agonists (i.e. nicotine) have a proliferative effect and antagonists (i.e. curare or a-cobratoxin) have an inhibitory effect. Furthermore, apoptosis mechanisms are under the control of the cholinergic system ^{319,320}
	Other studies (endophenotype investigations, disease models, case reports)	SZ. The <i>PPP3CC</i> gene expression level was positively correlated with the BPRS score ²⁷²	Studies in vitro have shown that lithium and valproate increased the VMAT1 expression in nerve growth factor-differentiated PC12 cells, suggesting that this gene might be a rational target for mood drugs*** CR: The JARDIC-regulated genes SCN2A, CACNA1H, BDNF and SLC18A1 have been associated with autism and cognitive dysfunction**	The α_i -adrenengic subtypes have effects on the cognitive functions of prefrontal cortex relevant to schizophrena in animals ^{210,317}		Nocturnal frontal lobe epilepsy is associated with variations in CHRNA2 gene ⁹¹⁸
	Negative studies		SZ: 1FBS ²⁹¹	SZ: 3 CCS ^{913,314} BD: 1 FBS ^{1 55}		SZ: 1 CCS ⁴¹³ SZ: 1 FBS ¹⁴³ BD: 1 CCS ¹¹⁴ BD: 1 FBS ¹⁴³ AD: 3 CCS ²¹⁴⁻²¹⁷
	Positive studies		SZ: 5 CCS published with positive results ^{287–201} BP: 1 CCS ²⁰² AX: 1 CCS ²⁰³	SZ: 1 CCS ³¹¹ SZ: 1 FBS (trend ¹³⁵) AD: 1 CCS (trend ³¹²)	SZ: 1 CCS ¹⁰⁷	SZ: 1 FBS ³¹¹ BD: 1 FBS ³¹²
	Expression in the CNS and in peripheral sources of patients					
Continued	Neurodevelopmental (or biological) process		VMAT1 might be important neuronal migration, development of neurosecretory pathways, and the neuronal survival ²⁶⁶⁻²⁸⁶	The adrenergic system regulates key biological processes that are often dysregulated in these severe mental disorders such as sleep, learning, memory, attention, arousal and adaptation to stress ²⁰⁸	ARHGEF10 is a myelin-related gene, involved in myelin structure, composition, development or maintenance development or maintenance molecular regulators of the cell motility processes and are involved in cell-cycle progression and gene transcription ³⁰⁰	Nicotinic acetylcholine receptors (nAChRs) constitute a heterogeneous family of ion channels that mediate fast synaptic transmission in neurons. They have also been found on nonneuronal cells such as bronchial epithelium and keratinocytes. The cellular roles of non-neuronal nAChRs, including regulation of cell proliferation, angiogenesis, appotiosis, migration, invasion and secretion ³¹⁰
Tanic	Gene symbol position		VMAT'1/ SLC18A1* 8p21.3	<i>ADRA1A</i> * 8p21.2	ARHGEF10 8p23.3	CHRNA2" 8p21.2

Table 2	Continued						
Gene symbol position	Neurodevelopmental (or biological) process	Expression in the CNS and in peripheral sources of patients	Positive studies	Negative studies	Other studies (endophenotype investigations, disease models, case reports)	Cancer	Commentaries
CHRNA6" 8p11.23	See CHRNA2 annotation		SZ + BD: 1 FBS ³²²	BD: 1 FBS ^{31.2} AD: 3 CCS ³¹³⁻³¹⁷		Cancer: Lam et al. ³²³ found that nonsmall-cell lung cancers from nonsmokers showed higher expression of nAChR 6 (P<0.001) and 3 (P=0.007) subunit genes than those from smokers, adjusted for gender	
CHRNB3* 8p11.23	See CHRNA2 annotation		SZ + BD: 1 FB S^{922}	SZ: 1 FBS ¹⁴³ BD: 2 FBS ^{145,312}		Cancer: Analysis of 28 aqueous cell lung carcinomas showed increased levels of 5 and 3 nAChR mRNA ³²⁴	iavai es-suisucus a
<i>DKK4</i> 8p11.23	DKK4 is involved in embryonic development through its interactions with the Wnt signaling pathway. ²²⁵		SZ: 1 CCS ¹⁸⁶ SZ: 1 FBS ¹⁸⁶			Cancer: the loss of DKKs may facilitate tumorigenesis. <i>DKK4</i> was frequently silenced in endometrial cancer ²²⁶ and colorectal cancer ²²⁷	
<i>FGFR1</i> ^a 8p12	See FGF20 annotation	MD: FGFR1 was upregulated in prefrontal cortex, ²²⁸ FGFR1 was also observed to be upregulated in hippocampus, ²²⁸ BD: FGFR1 has been identified as a biomarker for low mood in whole-blood (predominantly lymphocytes) samples; ⁷⁷⁷	SZ: 1 CCS ¹⁶⁷			See FGF20 annotation. The fibroblast growth factors are potent angiogenic inducers in the embryonic brain and might play a principal role in the formation of the vascular cancers ³²⁰	
<i>PCM1</i> 8p22	The gene <i>PCMI</i> is involved in the maintenance of centrosome integrity and the regulation of the microtubule cytoskeleton. Its protein structure bears similarities to the structural myosin proteins, which are microtubule-associated proteins involved in axon guidance, synaptogenesis, functioning of the synapse, and intracellular transport along axons and dendrites.		SZ: 1 CCS ³³² SZ: 1 FBS ³³²		SZ: variations on <i>PCM1</i> gene are associated with orbitofrontal gray matter volumetric deficits (SMRI) ³³²	Cancer: Alterations in <i>PCMI</i> structure are associated with diverse myeloid malignancies ³⁵⁴	
<i>PLAT</i> 8p11.23	The plasmin genes are involved in the degradation of A β peptides, the accumulation of which in brain is a hallmark of AD ³³⁴		AD: 1 CCS ³³⁴	AD: 2 CCS 334,335 AD: 1 FBS 394		Cancer: PLAT is associated with oligoden drogliom as ³³⁶	^b Meta-analysis of all published AD- association studies (3 CCS) for rs4646972 (Alu ins/del) pm (OR (95% CJ) = 1.34 (0.78, 2.31))

Table 2 Continued

Gene symbol position	Neurodevelopmental (or biological) process	Expression in the CNS and in peripheral sources of patients	Positive studies	Negative studies	Other studies (endophenotype investigations, disease models, case reports)	Cancer	Commentaries
<i>SFRP1</i> 8p11.23	Secreted frizzled related protein 1 (SFRP1) and Wnt signaling in innervated and denervated skeletal muscle ³³⁷		SZ: 1 FBS ¹⁰⁶	SZ: 1 CCS ¹⁸⁶		Cancer: The frequent methylation and silencing of Wnt antagonist genes (i.e., SFRP family genes) in HCC, and suggest that their loss of function contributes to activation of Wnt signaling during hepatocarcinogenesis ^{3,3,8} SFRP was shown to be hypermethylated in renal cell carcinoma and other cancer types ^{3,3,9}	
$FGF17^a$ 8 $p21.3$	See FGF20 annotation FGF3, FGF15, FGF17, has a fundamental role in controlling the size of the frontal cortex**				DM: Fgf17-null mice showed specific social behavior deficits ⁵²	Cancer: see FGF20 and FGFR1 annotations and Discussion section	
NEF3** 8p21.2	NEF3 belongs to the dopamine receptor interacting protein (DRIP) gene family. DRIP family affects many aspects of dopamine receptor activity. ^{343,344}			SZ; 1 FBS ¹⁴³ BD; 1 FBS ¹⁴³	Association of <i>NEF3</i> with early response to antipsychotic medication ³⁴⁴	Cancer: NEF3 has been suggested to be potentially involved in pancreatic cancer development and progression ³⁴⁵	
<i>mir-124-1</i> 8p23.1	hsa-mir-124-1 are most likely to be critical in the CNS development ⁵⁵					Cancer: see Discussion section	
<i>mir-320</i> 8p21.3	hsa-mir-320 are most likely to be critical in the CNS development ⁵⁵					Cancer: see Discussion section	

traits; BD, bipolar disorders; BPKS, the Brief Psychotic Rating Scale; CR, case reports; DLPFC, dorsolateral prefrontal cortex; DM, disease model; DS, down syndrome; DTI, diffusion tensor imaging; CCS, case—control Studies; COS, childhood-onset schizophrenia subjects; CPT, continuous performance test; CNS, central nervous system; Abbreviations: ACC, anterior cingulate cortex; AD, Alzheimer's disease; ADP, Alzheimer's disease families with psychoses; AUT, autism; AX, anxiety-related personality FBS, family-based studies; FC, frontal cortex; GABA44, GABA(A) receptor, \$\alpha\$ subunit gene; MD, major depression; METH, Methamphetamine-induced psychosis; OR odds ratio; PBL, peripheral blood leucocytes; PD, Parkinson's disease; pm, polymorphism; SMDF, sensory and motor neuron derived factor NRG1 isoform; SMRI structural magnetic resonance imaging; SZ, schizophrenia; SZ-Rel, relatives of subjects with schizophrenia; WCST, Wisconsin Card Sorting Test. Official gene symbols are reported, according to the Entrez gene database (http://www.ncbi.nlm.nih.gov/sites/entrez (last accessed 29 June 2008)) ^PIndicates odds ratio estimates by SZGene, AlzGene and PDGene databases. ^{43,53,54} (last accessed 26 July 2008)]. ^aIndicates genes that are expressed in the CNS (see Supplementary Table S5 for more information).

major depressed subjects compared with control and bipolar subjects 357 and, on the other, of FGFR2 in the temporal cortex of major depressed subjects compared with control, 358 although this finding has been challenged by the findings of a separate study using prefrontal postmortem cortices. 328 In this last study, however, FGFR1 was upregulated in subjects with major depression or suicide. FGFR1 was also observed to be upregulated in hippocampus of subjects with major depression when compared with controls. 329 The FGF system is also modulated by psychotropic drugs, including fluoxetine, diazepam and the atypical antipsychotic clozapine. 359

FGF-signaling, through FGF8, FGF15, FGF17, has a fundamental role in controlling the size of the frontal cortex. ^{340,341} Recently, we described a Fgf17^{-/-} mutant mice that showed a reduction in the size of dorsomedial prefrontal areas and a circumscribed set of higher order social deficits, without affecting olfaction, pheromone responses, aggression or an array of nonsocial behaviors. ^{50–52,360}

In the analysis of the Fgf17' mice, the authors used a panel of gene expression markers to examine the role of *Fgf17* in the regionalization of the rodent FC. They reported that the dorsal FC of Fgf17' mice was reduced in size, whereas ventral and orbital FC regions appeared normal. Thus, in addition to an overall effect on neocortical patterning, Fgf17 has an unexpectedly selective role in regulating dorsal FC development. 50,51,360 The reduction in the dorsal FC area was complemented by a rostromedial shift of caudal cortical areas. These changes in regionalization persisted into adulthood and were accompanied by a reduction in FC projections to subcortical targets. This reduction of prefrontal cortex output to striatal or midbrain dopaminergic neurons may have important physiologic ramifications for the regulation of neural pathways involved in reward, cognition and social behavior. 361

It has long been known that dorsal and ventral FC subdivisions have distinct roles in regulating cognition and behavior in rodents and primates, including humans. 361,362 For example, subdivisions of the dorsal prefrontal cortex are implicated in working memory, attention, response selection, temporal processing of information, effort-related decision making and social valuation, whereas ventromedial and orbital subdivisions are implicated in behavioral flexibility, emotional regulation, delayrelated decision making, evaluation of rewards and autonomic control. Therefore, the Fgf17' mutant mice provide an opportunity to examine the behavioral and neurophysiologic consequences of an early developmental genetic lesion that selectively affects the dorsal FC. We propose that elucidating the signaling pathways downstream of Fgf17 will provide important insights into the genetic pathways that regulate FC development and that may be disrupted in disorders that affect cognition, emotion and social interactions, such as autism and schizophrenia.

In addition, members of the fibroblast growth factor family are significantly associated with a variety of human cancers. 169–171 For example, FGF17and FGFR1 are commonly overexpressed in advanced human prostate cancer. 364,365 It is noted that there is evidence of a selective overexpression of FGFR1 and FGFR4 in clinical prostate cancer, which specifically supports the notion of targeted inhibition of these receptors to disrupt FGF signaling. 366 Moreover, fusions between FGFR1 and several genes have been identified in the hematologic malignancy 8p11 myeloproliferative syndrome. 367 Consequently, the above mentioned relationship between certain types of cancer involving 8p and schizophrenia could be in part explained, thanks to the potential function of FGF17/FGFR1 in tumorigenesis and in cerebral development.

Discussion

Chromosome 8p is rich in genes that are implicated in neuropsychiatric disorders. *VMAT1/SLC18A1*, *NRG1*, *PPP3CC* and *DPYSL2* are clearly associated with schizophrenia and probably with bipolar disorder. In addition, findings reveal that *EGR3* (schizophrenia or SZ), *FGF20* (Parkinson's Disease or PD), *FGFR1* (SZ), *LPL* (Alzheimer's Disease or AZ), *NAT2* (PD) and *PCM1* (SZ) seem to be promising candidate genes as well, while *FZD3* (SZ, bipolar disorder or BD and major depression or MD) and *NAT1* (SZ, BD, PD and AZ) mainly gave negative results (see Ref. 55,65,66 and Table 2). As discussed above, we suggest that alterations in *FGF17*, *hsa-mir-124-1* and *hsa-mir-320* should be considered to endow susceptibility to mental illness.

It is clearly premature to conclude that many of the 8p genes are connected to mental illness. Associations with mental illness and variants on *ADRA1A*, *ARHGEF10*, *CHRNA2*, *CHRNA6*, *CHRNB3*, *DKK4*, *LDL*, *PLAT* and *SFRP1* are weak (based only in one molecular genetics study) or contradictory (studies with positive and negative results). In addition, meta-analysis has only been performed on polymorphisms of *DPYSL2*, *FZD3*, *NRG1*, *PPP3CC*, *VMAT1/SLC18A1*, *FGF20* and *LPL*, and many of these meta-analysis results may represent false-positive findings, in particular those based on small (<10) sample size. 44

Despite the shortcomings of much of the evidence, it is worth continuing positional and association studies to scrutinize 8p, but using larger samples of different ethnic populations and more stringent criteria for replication or low *P*-values, focusing on those findings that have been previously replicated. Toward this goal, various genome-wide association studies are being applied to identify and characterize single-nucleotide polymorphisms in the DNA of hundreds or thousands of people worldwide with and without a particular disease or families with schizophrenia or bipolar disorder. Likewise, several genome-wide association studies have found that other forms of genetic variation on 8p, beyond the single-nucleotide scale, such as structural variations

are associated with autism²⁹ and schizophrenia¹⁰ among other disorders.³⁷⁰ Surely, these technologies are revolutionizing the genetics of behavioral traits, complex disorders or our individuality. 368

Cancer and Schizophrenia: tumor-suppressor genes, oncogenes and microRNAs

Tumor-suppressor genes and oncogenes on 8p. There is considerable evidence that suggests mechanistic connections of genes on 8p among certain types of cancer and schizophrenia. It is biologically plausible that specific tumor-suppressor genes on 8p, that are downregulated in lung and prostate cancer, could be upregulated in schizophrenia. This phenomenon has been considered for various tumor-suppressor genes, such as TP53 on 17p13,371 APC or adenomatous polyposis coli on 5q21-22.372 and TGFBR2 or transforming growth factor-β receptor on 3p22, however in this last case with negative association for 10 single-nucleotide polymorphisms in the Japanese population.³⁷³

The tumor-suppressor TP53 gene has been identified as the most commonly mutated gene in human neoplasms.³⁷⁴ The p53 tumor-suppressor protein regulates the cell cycle, checkpoint control, repair of DNA damage and apoptosis, 375,376 and several developmental processes, including cerebral vascularization,³⁷⁷ neurogenesis and neural crest migration.³⁷⁸ Independent genetic evidence for TP53 as a schizophrenia susceptibility gene is strong, with five of six studies reporting significant association.379-383 Genotype and allele frequencies at MspI polymorphisms of TP53 are likewise significantly different between Korean schizophrenia and lung cancer subjects.³⁷¹

TP53 activates the transcription of PTEN (tumorsuppressor phosphatase with tensin homology), and therefore functions as a negative regulator of the entire phosphatidylinositol-3-kinase (PI3K)-AKT signaling pathway that drives tumorigenesis and many critical signaling systems involved in neural development, survival and plasticity.385 The inappropriate inhibition of PI3K-AKT pathway has been associated with diseases as diverse as diabetes and schizophrenia. 386,387 Deregulation of PTEN function is also implicated in autism and brain tumors. 388,389 It is noted that the NQO1 enzyme protects against oxidative stress and carcinogenesis, including stabilization of TP53.³⁹⁰ NQO1*2 is a missense variant (NP_000894:p.187P>S) that predicts poor survival among women with breast cancer mediated, in part, by TP53-linked roles of NQO1.³⁹¹ Even more interestingly, one study suggests an increased risk for tardive dyskinesia in schizophrenic NQO1*2 carriers. 392 Nevertheless, other studies failed in finding this association.393,394

Defects in tumor-suppressor APC gene, which is associated with colon and other cancers, 395,396 are also associated with susceptibility to schizophrenia; furthermore, APC is upregulated in patients with schizophrenia. 372 APC is a key component of the Wnt/

Winless signaling transduction pathway, which plays important roles in a number of developmental processes and in tumorigenesis. 171,397 Thus, there may be a relationship between the functions of these tumor suppressors and the molecular mechanisms and cellular biology underlying schizophrenia.

Unfortunately, almost nothing is known about the role of 8p tumor suppressors in schizophrenia or other neuropsychiatric disorders. On the other hand, there are many putative mental illness susceptibility genes on 8p (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL mir-124-1, mir-320, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) involved in both cancer and neuropsychiatric disorders' biology (see Table 1 and TS1 at Supplementary Information). NRG1, without a doubt, is one of the most frequently studied genes in schizophrenia (see Table 2). 237,398 Over the course of last two decades, numerous investigators have tried to unravel the biological function of the NRG1 and of other related molecules (that is, of its receptors, the Epidermal Growth Factor Receptor/ErbB family of proto-oncogenes which signal in part through PI3K-AKT-PTEN) in the human brain and cancer.³⁹⁹ These genes have critical functions in many aspects of neural development and function.247 Furthermore, overexpression of NRG1 is found in many different cancer types and correlates with cancer progression and an aggressive phenotype, 260 where it may regulate tumor-suppressor genes and/or genes that control cell differentiation or apoptosis.²⁶¹ Another attractive hypothesis is that the NRG1 locus is broken in several types of epithelial cancers, such as breast, pancreatic or colon cancer. 400 It is possible that most of these breaks represent chromosome translocations, but accompanied by variable amplifications, deletions and inversions proximal to these breakpoints.⁴⁰¹

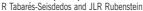
The breakage of *NRG1* might have many complex effects, because there are multiple splice forms of NRG1 with different activities. In this regard, Tan et al.402 suggest that genetic regulation of NRG1 type IV isoform may have the dual effect of both protecting against cancer while increasing the risk for schizophrenia. Therefore, the schizophrenia risk-associated single-nucleotide polymorphism, rs6994992, which is a functional promoter variant associated with schizophrenia genetic predisposition and NRG1 type IV expression, 403 might be as a negative regulator of tumorigenesis. Subsequently, Kanakry et al.404 using a B lymphoblast cell model, showed that NRG1 regulates cell adhesion by ErbB2/PI3K-AKT pathways. The cell lines derived from patients with schizophrenia showed a deficiency in NR1α-induced adhesion, suggesting a cellular phenotype that could contribute to disease risk. Nevertheless, evidence for a cosegregation of cancer with susceptibility or protective NRG1 variants for specific neuropsychiatric disorders has not been reported; this would be more persuasive evidence for the link between these disorders.

miRNAs on 8p. miRNAs play critical roles in the regulation of gene expression by translational or post translational mechanisms, and influence human genetic variation and normal development.55 miRNA dysregulated expression can be cells. 171,405,406 Lujambio et al. 407 have observed that DNA hypomethylation induces a loss of miRNA expression in cancer cells, such as the 8p brainspecific miRNA miR-124a. The authors functionally linked the epigenetic loss of miRNA-124a expression with the activation of oncogenes (CDK6 (cyclin D kinase 6)) and tumor-suppressor genes (retinoblastoma)). Moreover, miRNA-124a may be also deregulated in subjects with acute myeloid leukemia. 408 Most recently, Silber et al. 409 have shown that miRNA-124 and miRNA-137 can induce neuronal differentiation of oligodendroglioma tumor stem cells and glioblastoma multiforme (GBM) stem cells, and inhibit proliferation of GBM cell lines suggesting an anticancer effect of these miRNAs. miR-320 is also located at 8p; its altered expression in human cholangiocarcinoma cell lines may contribute to cholangiocyte-specific responses to chemotherapy. 410 In patients with cytogenetically normal acute myeloid leukemia, Marcucci et al.411 found an altered expression of 12 miRNAs (including miR-124a and miR-320) that was associated with clinical outcome in a subgroup of patients with high-risk acute myeloid leukemia. Interestingly, the methyl-CpG-binding domain (MBD) proteins (MBD1, MBD2, MBD3, MBD4 and MeCP2) are critical mediators of DNA methylation-regulated epigenetic processes. The MBD family proteins are associated with tumorigenesis and drug resistance. Mutations in MBD2 and MeCP2 genes are likewise implicated in a of related but distinct neurodevelopmental disorders, including X-linked mental retardation disorders, autism and Rett syndrome, ^{412–415} and are putative targets for miR-124a and miR-320 predicted by computational analysis. 416 Thus, miRNAs may provide a homeostatic mechanism for maintaining MBD2 and MeCP2 levels. It is noted that using this database of predicted miRNA target genes, we have identified new putative targets for miR-124a (FMR1 or fragile X-linked mental retardation) and miR-320 (NLGN3 or neuroligin3; AUTS2 or autism susceptibility candidate 2; A2BP1 or ataxin 2-binding protein 1, also called FOX1), which are associated with autism, schizophrenia and related syndromes. 417 The function of some of these genes is presently unknown (AUTS2). Others are important in glutamatergic synapse function and/or in neuronal cell adhesion (FMR1 and NLGN3), neuronal activity regulation (FMR1 and A2BP1) and in endosomal trafficking (A2BP1).

miRNAs expression is the subject of considerable interest in schizophrenia. 418–423 Very little is known about the role of miRNAs in autism; however, current findings suggest that alterations in the interactions between miRNAs and their mRNA targets may contribute to autism phenotypic variation. 424–426 For

instance, Abu-Elneel *et al.*⁴²⁶ found that miRNA-320 (at 8p21.3) and miRNA-598 (at 8p23.1) are dysregulated in postmortem cerebellar cortex from 13 individuals with autism spectrum disorders compared with nonautism controls.

Conclusions and future directions

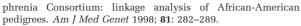

Although many questions remain unanswered,427 the research should focus on common or related pathways, or processes that potentially represent a point of convergence for molecular signaling not only among schizophrenia, autism or other neuropsychiatric disorders, but also with cancer. Compared with classical approaches, focusing on a group of genes belonging to the same functional pathway or that operates together as a network could yield the best results. The cross-sectional dimension raises the possibility that shared components of the schizophrenia/cancer phenotype, or other common human diseases, might be used to distinguish genetic and molecular pathways in these severe disorders. Consistent with this idea, analysis of the genes within chromosome 8p represents a rich resource to understand the biological connections among disorders that are considered to be distinct.

Acknowledgments

This study was supported by grants from the following: Spanish FIS-MSC Grant PI051293, the Spanish Ministry of Health, Instituto de Salud Carlos III, CIBERSAM and Fundación Alicia Koplowitz to RTS; and from Nina Ireland and NIMH R37MH49428-16 to JLRR. We thank Teresa Escámez, Juan Antonio Martínez-Giménez, Vicent Balanzá-Martínez, Salvador Martínez, Eduard Vieta and Manuel Gómez-Beneyto for their helpful advice on previous versions of the manuscript and for their excellent technical assistance.

References

- 1 Fombonne E. Epidemiology of autistic disorder and other pervasive developmental disorders. *J Clin Psychiatry* 2005; **66**: \$3-\$8
- 2 Insel TR, Scolnick EM. Cure therapeutics and strategic prevention: raising the bar for mental health research. Mol Psychiatry 2006: 11: 11–17
- 3 WHO Report. 2002; http://www.who.int/healthinfo/bodestimates/en/.
- 4 Wu EQ, Birnbaum HG, Shi L, Ball DE, Kessler RC, Moulis M *et al.* The economic burden of schizophrenia in the United States in 2002. *J Clin Psychiatry* 2005; **66**: 1122–1129.
- 5 McMahon M, Morgan S, Mitton C. The Common Drug Review: a NICE start for Canada? *Health Policy* 2006; 77: 339–351.
- 6 Couzin J. Science and commerce. Gene tests for psychiatric risk polarize researchers. Science 2008; 319: 274–277.
- 7 Hyman SE. Can neuroscience be integrated into the DSM-V? Nat Rev Neurosci 2007; 8: 725–732.
- 8 Jablensky A. Subtyping schizophrenia: implications for genetic research. *Mol Psychiatry* 2006; **11**: 815–836.
- 9 Burstein HJ, Schwartz RS. Molecular Origins of Cancer. N Engl J Med 2008; 358: 527.


- 10 Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008: 320: 539-543.
- 11 Belmonte MK, Cook Jr EH, Anderson GM, Rubenstein JL, Greenough WT. Beckel-Mitchener A et al. Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry 2004; 9: 646-663.
- 12 Moldin SO, Rubenstein JL, Hyman SE. Can autism speak to neuroscience? J Neurosci 2006; 26: 6893-6896.
- 13 Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 2008; 13: 833-857. [Epub ahead of print] doi: 10.1038/mp.2008.65.
- Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130: 1146-1158.
- Harrison PJ. Schizophrenia susceptibility genes and neurodevelopment. Biol Psychiatry 2007; 61: 1119-1120.
- 16 Nusbaum C, Mikkelsen TS, Zody MC, Asakawa S, Taudien S, Garber M et al. DNA sequence and analysis of human chromosome 8. Nature 2006; 439: 331-335.
- 17 Hellmann I, Prüfer K, Ji H, Zody MC, Pääbo S, Ptak SE. Why do human diversity levels vary at a megabase scale? Genome Res 2005: 15: 1222-1231.
- 18 Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525-528.
- Sebat J. Major changes in our DNA lead to major changes in our thinking. Nat Genet 2007; 39: S3-S5.
- 20 Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 2007; 318: 420-426.
- 21 Frank B, Bermejo JL, Hemminki K, Sutter C, Wappenschmidt B, Meindl A et al. Copy number variant in the candidate tumor suppressor gene MTUS1 and familial breast cancer risk. Carcinogenesis 2007; 28: 1442-1445.
- 22 Lee C, Morton CC. Structural Genomic Variation and Personalized Medicine. N Engl J Med 2008; 358: 740-741.
- 23 Korbel JO, Urban AE, Grubert F, Du J, Royce TE, Starr P et al. Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome. Proc Natl Acad Sci USA 2007; 104: 10110-10115.
- 24 Bennetto L, Kuschner ES, Hyman SL. Olfaction and taste processing in autism. Biol Psychiatry 2007; 62: 1015-1021.
- 25 Seckinger RA, Goudsmit N, Coleman E, Harkavy-Friedman J, Yale S, Rosenfield PJ et al. Olfactory identification and WAIS-R performance in deficit and nondeficit schizophrenia. Schizophr Res 2004; 69: 55-65.
- 26 Strous RD, Shoenfeld Y. To smell the immune system: olfaction, autoimmunity and brain involvement. Autoimmun Rev 2006; 6:
- Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral D, Van de Water J. Autoantibodies in autism spectrum disorders (ASD). Ann N Y Acad Sci 2007; 1107: 79-91.
- 28 Knight JG, Menkes DB, Highton J, Adams DD. Rationale for a trial of immunosuppressive therapy in acute schizophrenia. Mol Psychiatry 2007; 12: 424-431.
- 29 Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477-488.
- Groth M, Szafranski K, Taudien S, Huse K, Mueller O, Rosenstiel P et al. High-resolution mapping of the 8p23.1 beta-defensin cluster reveals strictly concordant copy number variation of all genes. Hum Mutat 2008; 29: 1247-1254. [E-pub ahead of print] doi: 10.1002/humu.20751.
- 31 Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 2006; 79:
- Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al. International SNP Map Working Group. A map of

- human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928-933.
- 33 Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T et al. Mapping and sequencing of structural variation from eight human genomes. Nature 2008; 453: 56-64.
- 34 MacIntyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ. Chromosomal abnormalities and mental illness. Mol Psychiatry 2003; 8: 275-287.
- 35 Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995; 60: 252-260.
- 36 Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996; 153: 1534-1540.
- 37 Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70-73.
- 38 Suarez BK, Duan J, Sanders AR, Hinrichs AL, Jin CH, Hou C et al. Genomewide linkage scan of 409 European-ancestry and African American families with schizophrenia: suggestive evidence of linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the combined sample. Am J Hum Genet 2006; 78: 315-333.
- 39 Goes FS, Sanders LL, Potash JB. The genetics of psychotic bipolar disorder. Curr Psychiatry Rep 2008; 10: 178-189.
- 40 Serretti A, Mandelli L. The genetics of bipolar disorder: genome 'hot regions,' genes, new potential candidates and future directions. Mol Psychiatry 2008; 13: 742-771.
- Birnbaum D, Adélaïde J, Popovici C, Charafe-Jauffret E, Mozziconacci MJ, Chaffanet M. Chromosome arm 8p and cancer: a fragile hypothesis. Lancet Oncol 2003; 4: 639-642.
- 42 Ramalingam A, Duhadaway JB, Sutanto-Ward E, Wang Y, Dinchuk J, Huang M et al. Prendergast GC. Bin3 deletion causes cataracts and increased susceptibility to lymphoma during aging. Cancer Res 2008: 68: 1683-1690.
- 43 http://www.schizophreniaforum.org/res/sczgene/default.asp(last accessed 26 July 2008).
- 44 Allen NC, Bagade S, McQueen MB, Ioannidis JPA, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nature Genetics 2008; 40: 499-506.
- 45 Bray NJ, Holmans PA, van den Bree MB, Jones L, Elliston LA, Hughes G et al. Cis- and trans-loci influence expression of the schizophrenia susceptibility gene DTNBP1. Hum Mol Genet 2008: 17: 1169-1174.
- 46 Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 2002; 7: 542-559.
- 47 Owen MJ, Craddock N, O'Donovan MC. Schizophrenia: genes at last? Trends Genet 2005; 21: 518-525.
- 48 Kim JJ, Mandelli L, Pae CU, De Ronchi D, Jun TY, Lee C $et\ al.$ Is there protective haplotype of dysbindin gene (DTNBP1) 3 polymorphisms for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 375-379.
- 49 Kas MJ, Fernandes C, Schalkwyk LC, Collier DA. Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry 2007; 12: 324-330.
- 50 Cholfin JA, Rubenstein JL. Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci USA 2007; 104: 7652-7657.
- Cholfin JA, Rubenstein JL. Genetic regulation of prefrontal cortex development and function. Novartis Found Symp 2007; 288:
- 52 Scearce-Levie K, Roberson ED, Gerstein H, Cholfin JA, Mandiyan VS, Shah NM et al. Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behav 2008; 7: 344-354.
- $53\ http://www.alzforum.org/res/com/gen/alzgene/default.asp \quad (last$ accessed 26 July 2008).
- 54 http://www.pdgene.org/ (last accessed 26 July 2008).
- 55 Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 2007; 8: 215-239.

- 56 Kim SH, Hu Y, Cadman S, Bouloux P. Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome. *J Neuroendocrinol* 2008; 20: 141–163.
- 57 Kallmann FJ, Schonfeld WA, Barrerea SE. The genetic aspects of primary eunuchoidism. Am J Ment Defic 1944; 158: 203–236.
- 58 Kallmann FJ. Heredity and eugenics. Am J Psychiatry 1944; 100: 551–553.
- 59 Cowen MA, Green M. The Kallmann's syndrome variant (KSV) model of the schizophrenias. Schizophr Res 1993; 9: 1–10.
- 60 Corcoran C, Whitaker A, Coleman E, Fried J, Feldman J, Goudsmit N et al. Olfactory deficits, cognition and negative symptoms in early onset psychosis. Schizophr Res 2005; 80: 283–293.
- 61 Versiani BR, Trarbach E, Koenigkam-Santos M, Dos Santos AC, Elias LL, Moreira AC et al. Clinical assessment and molecular analysis of GnRHR and KAL1 genes in males with idiopathic hypogonadotrophic hypogonadism. Clin Endocrinol (Oxf) 2007; 66: 173–179.
- 62 Vagenakis GA, Hyphantis TN, Papageorgiou C, Protonatariou A, Sgourou A, Dimopoulos PA et al. Kallmann's syndrome and schizophrenia. Int J Psychiatry Med 2004; 34: 379–390.
- 63 Papanikolaou K, Paliokosta E, Gyftodimou J, Kolaitis G, Vgenopoulou S, Sarri C et al. A case of partial trisomy of chromosome 8p associated with autism. J Autism Dev Disord 2006; 36: 705–709.
- 64 Zwaigenbaum L, Sonnenberg LK, Heshka T, Eastwood S, Xu J. A girl with pervasive developmental disorder and complex chromosome rearrangement involving 8p and 10p. J Autism Dev Disord 2005; 35: 393–399.
- 65 Tahvanainen E, Ranta S, Hirvasniemi A, Karila E, Leisti J, Sistonen P *et al.* The gene for a recessively inherited human childhood progressive epilepsy with mental retardation maps to the distal short arm of chromosome 8. *Proc Natl Acad Sci USA* 1994; **91**: 7267–7270.
- 66 Ranta S, Lehesjoki AE, Hirvasniemi A, Weissenbach J, Ross B, Leal SM *et al.* Genetic and physical mapping of the progressive epilepsy with mental retardation (EPMR) locus on chromosome 8p. *Genome Res* 1996; **6**: 351–360.
- 67 Fombonne E. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 2003; 33: 365–382.
- 68 Canitano R. Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 2007; 16: 61–66.
- 69 Hyde TM, Lewis SW. The secondary schizophrenias. In: Hirsch SR, Weinberger DR (ed). Schizophrenia. Blackwell Science Ltd: Malden, MA, 2003, pp 187–202.
- 70 Qin P, Xu H, Laursen TM, Vestergaard M, Mortensen PB. Risk for schizophrenia and schizophrenia-like psychosis among patients with epilepsy population based cohort study. BMJ 2005; 331: 23.
- 71 Sherr EH, Owen R, Albertson DG, Pinkel D, Cotter PD, Slavotinek AM et al. Genomic microarray analysis identifies candidate loci in patients with corpus callosum anomalies. Neurology 2005; 65: 1496–1498.
- 72 Dobyns WB. Absence makes the search grow longer. Am J Hum Genet 1996; 58: 7–16.
- 73 Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 2007; 8: 287–299.
- 74 Butler MG, Fischer W, Kibiryeva N, Bittel DC. Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome. Am J Med Genet A 2008; 146: 854–860.
- 75 Dimitropoulos A, Schultz RT. Autistic-like symptomatology in Prader-Willi syndrome: a review of recent findings. Curr Psychiatry Rep 2007; 9: 159–164.
- 76 Stefan M, Claiborn KC, Stasiek E, Chai JH, Ohta T, Longnecker R et al. Genetic mapping of putative Chrna7 and Luzp2 neuronal transcriptional enhancers due to impact of a transgene-insertion and 6.8 Mb deletion in a mouse model of Prader-Willi and Angelman syndromes. BMC Genomics 2005; 6: 157.
- 77 Yen CC, Liang SC, Jong YJ, Chen YJ, Lin CH, Chen YM et al. Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer 2007; 57: 292–301.

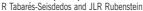
- 78 Shen H, Zhu Y, Wu YJ, Qiu HR, Shu YQ. Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization. Cancer Genet Cytogenet 2008; 181: 100–107.
- 79 Prentice LM, Shadeo A, Lestou VS, Miller MA, deLeeuw RJ, Makretsov N et al. NRG1 gene rearrangements in clinical breast cancer: identification of an adjacent novel amplicon associated with poor prognosis. Oncogene 2005; 24: 7281–7289.
- 80 Vecchione A, Ishii H, Shiao YH, Trapasso F, Rugge M, Tamburrino JF et al. Fez1/lzts1 alterations in gastric carcinoma. Clin Cancer Res 2001; 7: 1546–1552.
- 81 Hughes S, Williams RD, Webb E, Houlston RS. Meta-analysis and pooled re-analysis of copy number changes in colorectal cancer detected by comparative genomic hybridization. *Anticancer Res* 2006; **26**: 3439–3444.
- 82 Wolff EM, Liang G, Jones PA. Mechanisms of Disease: genetic and epigenetic alterations that drive bladder cancer. *Nat Clin Pract Urol* 2005; **2**: 502–510.
- 83 Lu T, Hano H. Identification of minimal regions of deletion at 8p23.1-22 associated with metastasis of hepatocellular carcinoma. *Liver Int* 2007; 27: 782–790.
- 84 Catts VS, Catts SV. Apoptosis and schizophrenia: is the tumour suppressor gene, p53, a candidate susceptibility gene? Schizophr Res 2000; 41: 405–415.
- 85 Jablensky A, Lawrence D. Schizophrenia and cancer: is there a need to invoke a protective gene? Arch Gen Psychiatry 2001; 58: 579–580.
- 86 Grinshpoon A, Barchana M, Ponizovsky A, Lipshitz I, Nahon D, Tal O et al. Cancer in schizophrenia: is the risk higher or lower? Schizophr Res 2005; 73: 333–341.
- 87 Lichtermann D, Ekelund J, Pukkala E, Tanskanen A, Lönnqvist J. Incidence of cancer among persons with schizophrenia and their relatives. *Arch Gen Psychiatry* 2001; **58**: 573–578.
- 88 Levav I, Lipshitz I, Novikov I, Pugachova I, Kohn R, Barchana M *et al.* Cancer risk among parents and siblings of patients with schizophrenia. *Br J Psychiatry* 2007; **190**: 156–161.
- 89 Catts VS, Catts SV, O'Toole BI, Frost AD. Cancer incidence in patients with schizophrenia and their first-degree relatives—a meta-analysis. Acta Psychiatr Scand 2008; 117: 323–336.
- 90 Torrey EF. Prostate cancer and schizophrenia. Urology 2006; 68: 1280–1283.
- 91 Barak Y, Levy T, Achiron A, Aizenberg D. Breast cancer in women suffering from serious mental illness. *Schizophr Res* 2008; **102**: 249–253.
- 92 Preti A. Reduced risk of cancer in schizophrenia: a role for obstetric complications? Acta Psychiatr Scand 2008; 118: 251– 253; [E-pub ahead of print].
- 93 Wiznitzer M. Autism and tuberous sclerosis. *J Child Neurol* 2004; **19**: 675–679.
- 94 Marcotte L, Crino PB. The neurobiology of the tuberous sclerosis complex. *Neuromolecular Med* 2006; **8**: 531–546.
- 95 Laursen TM, Munk-Olsen T, Nordentoft M, Mortensen PB. Increased mortality among patients admitted with major psychiatric disorders: a register-based study comparing mortality in unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia. J Clin Psychiatry 2007; 68: 899–907.
- 96 Carney CP, Jones LE. Medical comorbidity in women and men with bipolar disorders: a population-based controlled study. *Psychosom Med* 2006; 68: 684–691.
- 97 BarChana M, Levav I, Lipshitz I, Pugachova I, Kohn R, Weizman A et al. Enhanced cancer risk among patients with bipolar disorder. J Affect Disord 2008; 108: 43–48.
- 98 Brzustowicz LM, Honer WG, Chow EW, Little D, Hogan J, Hodgkinson K *et al.* Linkage of familial schizophrenia to chromosome 13q32. *Am J Hum Genet* 1999; **65**: 1096–1103.
- 99 Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS *et al.* Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. *Am J Hum Genet* 2001; **68**: 661–673.
- 100 Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH Genetics Initiative Millenium Schizo-

- 101 Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK et al. A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 2004; 9: 1083-1090.
- 102 Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405-411.
- 103 Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003;
- 104 Hovatta I, Lichtermann D, Juvonen H, Suvisaari J, Terwilliger JD, Arajärvi R et al. Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p and 22q in a population-based sampled Finnish family set. Mol Psychiatry 1998; 3: 452-457.
- 105 Kendler KS, MacLean CJ, Ma Y, O'Neill FA, Walsh D, Straub RE. Marker-to-marker linkage disequilibrium on chromosomes 5q, 6p, and 8p in Irish high-density schizophrenia pedigrees. Am JMed Genet 1999; 88: 29-33.
- 106 Chiu YF, McGrath JA, Thornquist MH, Wolyniec PS, Nestadt G, Swartz KL et al. Genetic heterogeneity in schizophrenia II: conditional analyses of affected schizophrenia sibling pairs provide evidence for an interaction between markers on chromosome 8p and 14q. Mol Psychiatry 2002; 7: 658-664
- 107 Maziade M, Roy MA, Rouillard E, Bissonnette L, Fournier JP, Roy A et al. A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: a linkage study in 13 target chromosomes. Mol Psychiatry 2001; 6: 684-693.
- 108 Cichon S, Schumacher J, Müller DJ, Hürter M, Windemuth C, Strauch K et al. A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Hum Mol Genet 2001; 10: 2933-2944.
- 109 Ophoff RA, Escamilla MA, Service SK, Spesny M, Meshi DB, Poon W et al. Genomewide linkage disequilibrium mapping of severe bipolar disorder in a population isolate. Am J Hum Genet 2002; 71: 565-574.
- 110 Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: Bipolar disorder. Am J Hum Genet 2003; 73: 49-62.
- 111 Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 2003; 73: 107-114.
- 112 Park N, Juo SH, Cheng R, Liu J, Loth JE, Lilliston B et al. Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol Psychiatry 2004; 9: 1091-1099.
- 113 Walss-Bass C, Montero AP, Armas R, Dassori A, Contreras SA, Liu W et al. Linkage disequilibrium analyses in the Costa Rican population suggests discrete gene loci for schizophrenia at 8p23.1 and 8q13.3. Psychiatr Genet 2006; 16: 159-168.
- 114 Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R et al. Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 2006; 11: 252-260.
- 115 Zubenko GS, Maher B, Hughes III HB, Zubenko WN, Stiffler JS, Kaplan BB et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am I Med Genet B Neuropsychiatr Genet 2003; 123: 1-18.
- 116 Zubenko GS, Maher BS, Hughes III HB, Zubenko WN, Scott Stiffler J, Marazita ML. Genome-wide linkage survey for genetic loci that affect the risk of suicide attempts in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 2004; 129: 47–54.
- 117 Holmans P, Weissman MM, Zubenko GS, Scheftner WA, Crowe RR, Depaulo Jr JR et al. Genetics of recurrent early-onset major depression (GenRED): final genome scan report. Am J Psychiatry 2007; 164: 248-258

- 118 Symons FJ, Sperry LA, Dropik PL, Bodfish JW. The early development of stereotypy and self-injury: a review of research methods. J Intellect Disabil Res 2005; 49: 144-158.
- 119 Lieberman MD. Social cognitive neuroscience: a review of core processes. Annu Rev Psychol 2007; 58: 259-289.
- 120 Loo SK, Fisher SE, Francks C, Ogdie MN, MacPhie IL, Yang M et al. Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: unique and shared genetic effects. Mol Psychiatry 2004; 9: 485-493.
- 121 Cloninger CR, Van Eerdewegh P, Goate A, Edenberg HJ, Blangero J, Hesselbrock V et al. Anxiety proneness linked to epistatic loci in genome scan of human personality traits. Am J Med Genet 1998; 81: 313-317.
- 122 Fullerton J, Cubin M, Tiwari H, Wang C, Bomhra A, Davidson S et al. Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait Loci that influence variation in the human personality trait neuroticism. Am J Hum Genet 2003; 72: 879-890.
- 123 Dina C, Nemanov L, Gritsenko I, Rosolio N, Osher Y, Heresco-Levy U et al. Fine mapping of a region on chromosome 8p gives evidence for a QTL contributing to individual differences in an anxiety-related personality trait: TPQ harm avoidance. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 104-108.
- 124 Ashley-Koch AE, Shao Y, Rimmler JB, Gaskell PC, Welsh-Bohmer KA, Jackson CE et al. An autosomal genomic screen for dementia in an extended Amish family. Neurosci Lett 2005; 379: 199-204.
- 125 Go RC, Perry RT, Wiener H, Bassett SS, Blacker D, Devlin B et al. Neuregulin-1 polymorphism in late onset Alzheimer's disease families with psychoses. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 28-32.
- 126 Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA 200; 286: 2239-2244.
- 127 Schellenberg GD, Dawson G, Sung YJ, Estes A, Munson J, Rosenthal E et al. Evidence for multiple loci from a genome scan of autism kindreds. Mol Psychiatry 2006; 11: 1049-1060, 1 979.
- 128 Allen-Brady K, Miller J, Matsunami N, Stevens J, Block H, Farley M et al. A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol Psychiatry 2008. [E-pub ahead of print] doi: 10.1038/mp.2008.14.
- 129 Spence SJ, Cantor RM, Chung L, Kim S, Geschwind DH, Alarcón M. Stratification based on language-related endophenotypes in autism: attempt to replicate reported linkage. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 591-598.
- 130 Kraepelin E. Dementia Praecox and Paraphrenia (1919), Translated by Barclay RM, Robertson GM (ed). Robert E Krieger: New
- 131 Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177-182.
- 132 Touma E, Kato S, Fukui K, Koike T. Calpain-mediated cleavage of collapsin response mediator protein (CRMP)-2 during neurite degeneration in mice. Eur J Neurosci 2007; 26: 3368-3381.
- Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 2005; 120: 137-149.
- 134 Edgar PF, Douglas JE, Cooper GJ, Dean B, Kydd R, Faull RL. Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry 2000; 5: 85–90.
- 135 Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 2000; 5: 142-149.
- 136 Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 2006; 6: 3414-3425.
- 137 Zhao X, Tang R, Xiao Z, Shi Y, Feng G, Gu N et al. An investigation of the dihydropyrimidinase-like 2 (DPYSL2) gene in schizophrenia: genetic association study and expression analysis. Int J Neuropsychopharmacol 2006; 9: 705-712.

- 138 Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB, Merchant M et al. Proteomics analysis of the Alzheimer's disease hippocampal proteome. J Alzheimers Dis 2007; 11: 153–164.
- 139 Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, Fountoulakis M. Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 1999; 57: 161–177.
- 140 Weitzdoerfer R, Fountoulakis M, Lubec G. Aberrant expression of dihydropyrimidinase related proteins-2, -3 and -4 in fetal Down syndrome brain. J Neural Transm Suppl 2001; 61: 95–107.
- 141 Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y et al. The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biol Psychiatry 2003; 53: 571–576.
- 142 Hong LE, Wonodi I, Avila MT, Buchanan RW, McMahon RP, Mitchell BD et al. Dihydropyrimidinase-related protein 2 (DRP-2) gene and association to deficit and nondeficit schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005; 136: 8–11.
- 143 Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 2005; 77: 918–936.
- 144 Nakata K, Ujike H, Tanaka Y, Takaki M, Sakai A, Nomura A et al. No association between the dihydropyrimidinase-related protein 2 (DRP-2) gene and bipolar disorder in humans. Neurosci Lett 2003; 349: 171–174.
- 145 Ujike H, Sakai A, Nakata K, Tanaka Y, Kodaka T, Okahisa Y et al. Association study of the dihydropyrimidinase-related protein 2 gene and methamphetamine psychosis. Ann N Y Acad Sci 2006; 1074: 90–96.
- 146 Carrette O, Burgess JA, Burkhard PR, Lang C, Côte M, Rodrigo N et al. Changes of the cortex proteome and Apolipoprotein E in transgenic mouse models of Alzheimer's Disease. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 840: 1–9.
- 147 Bisgaard CF, Jayatissa MN, Enghild JJ, Sanchéz C, Artemychyn R, Wiborg O. Proteomic investigation of the ventral rat hippocampus links DRP-2 to escitalopram treatment resistance and SNAP to stress resilience in the chronic mild stress model of depression. J Mol Neurosci 2007; 32: 132–144.
- 148 Henderson MJ, Ward K, Simmonds HA, Duley JA, Davies PM. Dihydropyrimidinase deficiency presenting in infancy with severe developmental delay. J Inherit Metab Dis 1993; 16: 574–576.
- 149 Putman CW, Rotteveel JJ, Wevers RA, van Gennip AH, Bakkeren JA, De Abreu RA. Dihydropyrimidinase deficiency, a progressive neurological disorder? *Neuropediatrics* 1997; 28: 106–110.
- 150 Goulet AC, Watts G, Lord JL, Nelson MA. Profiling of selenomethionine responsive genes in colon cancer by microarray analysis. *Cancer Biol Ther* 2007; 6: 494–503.
- 151 Roberts DS, Raol YH, Bandyopadhyay S, Lund IV, Budreck EC, Passini MA et al. Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABA(A) receptor alpha4 subunit expression. Proc Natl Acad Sci USA 2005; 102: 11894–11899.
- 152 Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T et al. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci USA 2007; 104: 2815–2820.
- 153 Mexal S, Frank M, Berger R, Adams CE, Ross RG, Freedman R et al. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers. Brain Res Mol Brain Res 2005; 139: 317–332.
- 154 Roberts DS, Hu Y, Lund IV, Brooks-Kayal AR, Russek SJ. Brain-derived neurotrophic factor (BDNF)-induced synthesis of early growth response factor 3 (Egr3) controls the levels of type A GABA receptor alpha 4 subunits in hippocampal neurons. J Biol Chem 2006; 281: 29431–29435.
- 155 Gallitano-Mendel A, Izumi Y, Tokuda K, Zorumski CF, Howell MP, Muglia LJ et al. The immediate early gene early growth response gene 3 mediates adaptation to stress and novelty. Neuroscience 2007; 148: 633–643.

- 156 Gallitano-Mendel A, Wozniak DF, Pehek EA, Milbrandt J. Mice lacking the immediate early gene Egr3 respond to the anti-aggressive effects of clozapine yet are relatively resistant to its sedating effects. Neuropsychopharmacology 2008; 33: 1266–1275.
- 157 Suzuki T, Inoue A, Miki Y, Moriya T, Akahira J, Ishida T et al. Early growth responsive gene 3 in human breast carcinoma: a regulator of estrogen-meditated invasion and a potent prognostic factor. Endocr Relat Cancer 2007; 14: 279–292.
- 158 Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005; 16: 233–247.
- 159 Basson MA, Echevarria D, Ahn CP, Sudarov A, Joyner AL, Mason IJ et al. Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development 2008; 135: 889–898.
- 160 Shin DM, Korada S, Raballo R, Shashikant CS, Simeone A, Taylor JR et al. Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. J Neurosci 2004: 24: 2247–2258.
- 161 Satake W, Mizuta I, Suzuki S, Nakabayashi Y, Ito C, Watanabe M et al. Fibroblast growth factor 20 gene and Parkinson's disease in the Japanese population. Neuroreport 2007; 18: 937–940.
- 162 Van der Walt JM, Noureddine MA, Kittappa R, Hauser MA, Scott WK, McKay R et al. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet 2004; 74: 1121–1127.
- 163 Gao X, Scott WK, Wang G, Mayhew G, Li YJ, Vance JM *et al.* Gene-gene interaction between FGF20 and MAOB in Parkinson disease. *Ann Hum Genet* 2008; **72**: 157–162.
- 164 Wang G, Van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 2008; 82: 283–289.
- 165 Clarimon J, Xiromerisiou G, Eerola J, Gourbali V, Hellström O, Dardiotis E et al. Lack of evidence for a genetic association between FGF20 and Parkinson's disease in Finnish and Greek patients. BMC Neurol 2005; 5: 11.
- 166 Fung HC, Scholz S, Matarin M, Simón-Sánchez J, Hernandez D, Britton A et al. Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 2006; 5: 911–916.
- 167 Jungerius BJ, Hoogendoorn ML, Bakker SC, Van't Slot R, Bardoel AF, Ophoff RA et al. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol Psychiatry 2007; 13: 1060–1068.
- 168 Murase S, McKay RD. A specific survival response in dopamine neurons at most risk in Parkinson's disease. J Neurosci 2006; 26: 9750–9760.
- 169 Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. *Cytokine Growth Factor Rev* 2005; **16**: 179–186.
- 170 Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. *Biol Pharm Bull* 2007; 30: 1819–1825.
- 171 Croce CM. Oncogenes and cancer. N Engl J Med 2008; 358: 502-511.
- 172 Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. *Stem Cell Rev* 2007; **3**: 30–38.
- 173 Deardorff MA, Tan C, Saint-Jeannet JP, Klein PS. A role for frizzled 3 in neural crest development. *Development* 2001; 128: 3655–3663.
- 174 Bovolenta P, Rodriguez J, Esteve P. Frizzled/RYK mediated signalling in axon guidance. *Development* 2006; **133**: 4399–4408.
- 175 Endo Y, Beauchamp E, Woods D, Taylor WG, Toretsky JA, Uren A et al. Wnt-3a and Dickkopf-1 stimulate neurite outgrowth in Ewing tumor cells via a Frizzled3- and c-Jun N-terminal kinase-dependent mechanism. Mol Cell Biol 2008; 28: 2368–2379.
- 176 Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. *Mol Psychiatry* 2006; 11: 965–978.


- 177 Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ et al. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 2008: 14: 156-174.
- 178 Katsu T, Ujike H, Nakano T, Tanaka Y, Nomura A, Nakata K et al. The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci Lett 2003; 353: 53-56.
- 179 Zhang Y, Yu X, Yuan Y, Ling Y, Ruan Y, Si T et al. Positive association of the human frizzled 3 (FZD3) gene haplotype with schizophrenia in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 2004; 129: 16–19.
- 180 Yang J, Si T, Ling Y, Ruan Y, Han Y, Wang X et al. Association study of the human FZD3 locus with schizophrenia. Biol Psychiatry 2003; 54: 1298-1301.
- 181 Ide M, Muratake T, Yamada K, Iwayama-Shigeno Y, Iwamoto K, Takao H et al. Genetic and expression analyses of FZD3 in schizophrenia. Biol Psychiatry 2004; 56: 462-465.
- 182 Jeong SH, Joo EJ, Ahn YM, Lee KY, Kim YS. Investigation of genetic association between human Frizzled homolog 3 gene (FZD3) and schizophrenia: results in a Korean population and evidence from meta-analysis. Psychiatry Res 2006; 143: 1-11.
- 183 Hashimoto R, Suzuki T, Iwata N, Yamanouchi Y, Kitajima T, Kosuga A et al. Association study of the frizzled-3 (FZD3) gene with schizophrenia and mood disorders. J Neural Transm 2005; **112**: 303-307.
- 184 Reif A, Melchers M, Strobel A, Jacob CP, Herterich S, Lesch KP et al. FZD3 is not a risk gene for schizophrenia: a case-control study in a Caucasian sample. J Neural Transm Suppl 2007; 72):
- 185 Wei J, Hemmings GP. Lack of a genetic association between the frizzled-3 gene and schizophrenia in a British population. Neurosci Lett 2004; 366: 336-338.
- 186 Proitsi P, Li T, Hamilton G, Di Forti M, Collier D, Killick R et al. Positional pathway screen of wnt signaling genes in schizophrenia: association with DKK4. Biol Psychiatry 2008; 63: 13-16.
- 187 Wang Y, Thekdi N, Smallwood PM, Macke JP, Nathans J. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci 2002; 22: 8563-8573.
- 188 Wang Y, Zhang J, Mori S, Nathans J. Axonal growth and guidance defects in Frizzled3 knockout mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J Neurosci 2006; 26: 355-364.
- 189 Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781-810.
- 190 Witze ES, Litman ES, Argast GM, Moon RT, Ahn NG. Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 2008; 320: 365-369.
- 191 You J, Nguyen AV, Albers CG, Lin F, Holcombe RF. Wnt pathwayrelated gene expression in inflammatory bowel disease. Dig Dis Sci 2008; 53: 1013-1019.
- 192 Kang G, Yue W, Zhang J, Huebner M, Zhang H, Ruan Y et al. Twostage designs to identify the effects of SNP combinations on complex diseases. J Hum Genet 2008; 53: 739-746.
- 193 Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008; 452: 429-435
- 194 Edwards DA, Zhang L, Alger BE. Metaplastic control of the endocannabinoid system at inhibitory synapses in hippocampus. Proc Natl Acad Sci USA 2008; 105: 8142-8147.
- 195 Blain JF, Aumont N, Théroux L, Dea D, Poirier J. A polymorphism in lipoprotein lipase affects the severity of Alzheimer's disease pathophysiology. Eur J Neurosci 2006; 24: 1245-1251.
- 196 Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 15533-15538.
- 197 Baum L, Chen L, Masliah E, Chan YS, Ng HK, Pang CP. Lipoprotein lipase mutations and Alzheimer's disease. Am J Med Genet 1999; 88: 136-139.
- 198 Baum L, Wiebusch H, Pang CP. Roles for lipoprotein lipase in Alzheimer's disease: an association study. Microsc Res Tech 2000; 50: 291-296.

- 199 Papassotiropoulos A, Wollmer MA, Tsolaki M, Brunner F, Molyva D, Lütjohann D et al. A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease. J Clin Psychiatry 2005: 66: 940-947.
- 200 Scacchi R, Gambina G, Broggio E, Moretto G, Ruggeri M, Corbo RM. The H+ allele of the lipoprotein lipase (LPL) HindIII intronic polymorphism and the risk for sporadic late-onset Alzheimer's disease. Neurosci Lett 2004; 367: 177-180.
- 201 Fidani L, Compton D, Hardy J, Petersen RC, Tangalos E, Mirtsou V et al. No association between the lipoprotein lipase S447X polymorphism and Alzheimer's disease. Neurosci Lett 2002; 322: 192-194.
- 202 Fidani L, Goulas A, Crook R, Petersen RC, Tangalos E, Kotsis A et al. An association study of the cholesteryl ester transfer protein TaqI B polymorphism with late onset Alzheimer's disease. Neurosci Lett 2004; 357: 152-154.
- 203 Myllykangas L, Polvikoski T, Sulkava R, Verkkoniemi A, Tienari P, Niinistö L et al. Cardiovascular risk factors and Alzheimer's disease: a genetic association study in a population aged 85 or over. Neurosci Lett 2000; 292: 195-198.
- 204 Martin-Rehrmann MD, Cho HS, Rebeck GW. Lack of association of two lipoprotein lipase polymorphisms with Alzheimer's disease. Neurosci Lett 2002; 328: 109-112.
- 205 Retz W, Thome J, Durany N, Harsányi A, Retz-Junginger P, Kornhuber J et al. Potential genetic markers of sporadic Alzheimer's dementia. Psychiatr Genet 2001; 11: 115-122.
- 206 Smith RC, Segman RH, Golcer-Dubner T, Pavlov V, Lerer B. Allelic variation in ApoC3, ApoA5 and LPL genes and first and second generation antipsychotic effects on serum lipids in patients with schizophrenia. Pharmacogenomics J 2008; 8: 228-236.
- Yamamoto K, Fukuda M, Nogawa A, Takahashi E, Miyaoka H. Decreased lipoprotein lipase as a risk factor for atypical neuroleptic-induced hypertriglyceridemia. J Clin Psychiatry 2007; 68: 802.
- 208 Kostomarov IV, Vodolagina NN, Malygina NA, Mitina ZS. The relation between gene of lipoprotein-lipase and carrier protein of cholesterol ethers and life duration in patients with chronic cerebral ischemia. Klin Med (Mosk) 2008; 86: 22-26.
- 209 Thomassen M, Tan Q, Kruse TA. Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat 2009: 113: 239-249. [Epub ahead of print] doi: 10.1007/s10549-008-9927-2.
- 210 Sun Q, Zhang Y, Liu F, Zhao X, Yang X. Identification of candidate biomarkers for hepatocellular carcinoma through precancerous expression analysis in an HBx transgenic mouse. Cancer Biol Ther 2007; 6: 1532-1538.
- 211 Gallucci M, Merola R, Leonardo C, De Carli P, Farsetti A, Sentinelli S et al. Genetic profile identification in clinically localized prostate carcinoma. Urol Oncol 2008; doi:10.1016/ j.urolonc.2008.04.008.
- 212 Saiz PA, Garcia-Portilla MP, Arango C, Morales B, Alvarez V et al. N-acetyltransferase-2 polymorphisms and schizophrenia. Eur Psychiatry 2006; 21: 333-337.
- 213 Rocha L, Garcia C, de Mendonça A, Gil JP, Bishop DT, Lechner MC. N-acetyltransferase (NAT2) genotype and susceptibility of sporadic Alzheimer's disease. Pharmacogenetics 1999; 9: 9-15.
- 214 Guo WC, Lin GF, Zha YL, Lou KJ, Ma QW, Shen JH. N-Acetyltransferase 2 gene polymorphism in a group of senile dementia patients in Shanghai suburb. Acta Pharmacol Sin 2004; **25**: 1112-1127.
- 215 Bandmann O, Vaughan J, Holmans P, Marsden CD, Wood NW. Association of slow acetylator genotype for N-acetyltransferase 2 with familial Parkinson's disease. Lancet 1136-1139.
- 216 Agúndez JA, Jiménez-Jiménez FJ, Luengo A, Molina JA, Ortí-Pareja M, Vázquez A et al. Slow allotypic variants of the NAT2 gene and susceptibility to early-onset Parkinson's disease. Neurology 1998; **51**: 1587–1592.
- Bandmann O, Vaughan JR, Holmans P, Marsden CD, Wood NW. Detailed genotyping demonstrates association between the slow acetylator genotype for N-acetyltransferase 2 (NAT2) and familial Parkinson's disease. Mov Disord 2000; 15: 30-35.
- 218 Nicholl DJ, Bennett P, Hiller L, Bonifati V, Vanacore N, Fabbrini G et al. A study of five candidate genes in Parkinson's disease and

- related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. *Neurology* 1999; **53**: 1415–1421.
- 219 Bialecka M, Gawronska-Szklarz B, Drozdzik M, Honczarenko K, Stankiewicz J. N-acetyltransferase 2 polymorphism in sporadic Parkinson's disease in a Polish population. Eur J Clin Pharmacol 2002: 57: 857–862.
- 220 Maraganore DM, Farrer MJ, Hardy JA, McDonnell SK, Schaid DJ, Rocca WA. Case-control study of debrisoquine 4-hydroxylase, Nacetyltransferase 2, and apolipoprotein E gene polymorphisms in Parkinson's disease. Mov Disord 2000; 15: 714–719.
- 221 Chan DK, Lam MK, Wong R, Hung WT, Wilcken DE. Strong association between N-acetyltransferase 2 genotype and PD in Hong Kong Chinese. *Neurology* 2003; **60**: 1002–1005.
- 222 Chaudhary S, Behari M, Dihana M, Swaminath PV, Govindappa ST, Jayaram S et al. Association of N-acetyl transferase 2 gene polymorphism and slow acetylator phenotype with young onset and late onset Parkinson's disease among Indians. Pharmacogenet Genomics 2005; 15: 731–735.
- 223 Ladero JM, Barquero MS, Coria F, Molina JA, Jiménez-Jiménez FJ, Benítez J. Acetylator polymorphism in Alzheimer's disease. Eur J Med 1993; 2: 281–283.
- 224 Nicholl DJ, Bennett P, Hiller L, Bonifati V, Vanacore N, Fabbrini G et al. A study of five candidate genes in Parkinson's disease and related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. Neurology 1999; 53: 1415–1421.
- 225 Johnson N, Bell P, Jonovska V, Budge M, Sim E. NAT gene polymorphisms and susceptibility to Alzheimer's disease: identification of a novel NAT1 allelic variant. BMC Med Genet 2004; 5: 6.
- 226 Golab-Janowska M, Honczarenko K, Gawronska-Szklarz B, Potemkowski A. The role of NAT2 gene polymorphism in aetiology of the most frequent neurodegenerative diseases with dementia. Neurol Neurochir Pol 2007; 41: 388–394.
- 227 Ladero JM, Jimenez FJ, Benitez J, Fernandez-Gundin MJ, Martinez C, Llerena A et al. Acetylator polymorphism in Parkinson's disease. Eur J Clin Pharmacol 1989; 37: 391–393.
- 228 Dupret JM, Longuemaux S, Lucotte G. Acetylator genotype for N-acetyltransferase 2 and Parkinson's disease. *Ann Neurol* 1999; 46: 433–434.
- 229 Harhangi BS, Oostra BA, Heutink P, van Duijn CM, Hofman A, Breteler MM. N-acetyltransferase-2 polymorphism in Parkinson's disease: the Rotterdam study. *J Neurol Neurosurg Psychiatry* 1999; **67**: 518–520.
- 230 Igbokwe E, Ogunniyi AO, Osuntokun BO. Xenobiotic metabolism in idiopathic Parkinson's disease in Nigerian Africans. East Afr Med J 1993; **70**: 807–809.
- 231 Borlak J, Reamon-Buettner SM. N-acetyltransferase 2 (NAT2) gene polymorphisms in Parkinson's disease. BMC Med Genet 2006; 7: 30.
- 232 Bialecka M, Klodowska-Duda G, Honczarenko K, Gawrońska-Szklarz B, Opala G, Safranow K et al. Polymorphisms of catecholo-methyltransferase (COMT), monoamine oxidase B (MAOB), Nacetyltransferase 2 (NAT2) and cytochrome P450 2D6 (CYP2D6) gene in patients with early onset of Parkinson's disease. Parkinsonism Relat Disord 2007; 13: 224–229.
- 233 Van der Walt JM, Martin ER, Scott WK, Zhang F, Nance MA, Watts RL et al. Genetic polymorphisms of the N-acetyltransferase genes and risk of Parkinson's disease. Neurology 2003; 60: 1189–1191.
- 234 Cooper GS, Treadwell EL, Dooley MA, St Clair EW, Gilkeson GS, Taylor JA. N-acetyl transferase genotypes in relation to risk of developing systemic lupus erythematosus. *J Rheumatol* 2004; 31: 76–80
- 235 Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. *JAMA* 2008; 299: 2423–2436.
- 236 Liu HE, Hsiao PY, Lee CC, Lee JA, Chen HY. NAT2*7 allele is a potential risk factor for adult brain tumors in Taiwanese population. Cancer Epidemiol Biomarkers Prev 2008; 17: 661–665.
- 237 Corfas G, Roy K, Buxbaum JD. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. *Nat Neurosci* 2004; 7: 575–580.
- 238 López-Bendito G, Cautinat A, Sánchez JA, Bielle F, Flames N, Garratt AN et al. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 2006; 125: 127–142.

- 239 Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. *Nat Rev Neurosci* 2008; 9: 437–452.
- 240 McIntosh AM, Moorhead TW, Job D, Lymer GK, Muñoz Maniega S, McKirdy J et al. The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiatry 2007; 13: 1054–1059.
- 241 Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR. Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. *Mol Psychiatry* 2004; 9: 299–307.
- 242 Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R *et al.* Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. *Proc Natl Acad Sci USA* 2006; **103**: 6747–6752.
- 243 Chong VZ, Thompson M, Beltaifa S, Webster MJ, Law AJ, Weickert CS. Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. *Schizophr Res* 2008; 100: 270–280.
- 244 Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 2006; 12: 824–828.
- 245 Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 2005; 10: 366– 374, 328.
- 246 Zhang HX, Zhao JP, Lv LX, Li WQ, Xu L, Ouyang X et al. Explorative study on the expression of neuregulin-1 gene in peripheral blood of schizophrenia. Neurosci Lett 2008; 438: 1–5.
- 247 Chagnon YC, Roy MA, Bureau A, Mérette C, Maziade M. Differential RNA expression between schizophrenic patients and controls of the dystrobrevin binding protein 1 and neuregulin 1 genes in immortalized lymphocytes. Schizophr Res 2008; 100: 281–290.
- 248 Bertram I, Bernstein HG, Lendeckel U, Bukowska A, Dobrowolny H, Keilhoff G et al. Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression. Ann N Y Acad Sci 2007; 1096: 147–156.
- 249 Green EK, Raybould R, Macgregor S, Gordon-Smith K, Heron J, Hyde S et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry 2005; 62: 642–648.
- 250 Thomson PA, Christoforou A, Morris SW, Adie E, Pickard BS, Porteous DJ et al. Association of Neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry 2007; 12: 94–104.
- 251 Georgieva L, Dimitrova A, Ivanov D, Nikolov I, Williams NM, Grozeva D et al. Support for Neuregulin 1 as a Susceptibility Gene for Bipolar Disorder and Schizophrenia. Biol Psychiatry 2008; 64: 419–427.
- 252 Cassidy F, Roche S, Claffey E, McKeon P. First family-based test for association of neuregulin with bipolar affective disorder. *Mol Psychiatry* 2006; 11: 706–707.
- 253 Perlis RH, Purcell S, Fagerness J, Kirby A, Petryshen TL, Fan J et al. Family-based association study of lithium-related and other candidate genes in bipolar disorder. Arch Gen Psychiatry 2008; 65: 53–61.
- 254 McInnes LA, Ouchanov L, Nakamine A, Jimenez P, Esquivel M, Fallas M et al. The NRG1 exon 11 missense variant is not associated with autism in the Central Valley of Costa Rica. BMC Psychiatry 2007; 7: 21.
- 255 Gruber O, Falkai P, Schneider-Axmann T, Schwab SG, Wagner M, Maier W. Neuregulin-1 haplotype HAP (ICE) is associated with lower hippocampal volumes in schizophrenic patients and in non-affected family members. J Psychiatr Res 2008; 43: 1–6.
- 256 Addington AM, Gornick MC, Shaw P, Seal J, Gogtay N, Greenstein D et al. Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol Psychiatry 2007; 12: 195–205.
- 257 Hall J, Whalley HC, Job DE, Baig BJ, McIntosh AM, Evans KL et al. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci 2006; 9: 1477–1478.
- 258 Walss-Bass C, Raventos H, Montero AP, Armas R, Dassori A, Contreras S *et al.* Association analyses of the neuregulin 1 gene

- with schizophrenia and manic psychosis in a Hispanic population. Acta Psychiatr Scand 2006; 113: 314-321.
- 259 O'Tuathaigh CM, O'Connor AM, O'Sullivan GJ, Lai D, Harvey R et al. Disruption to social dvadic interactions but not emotional/ anxiety-related behaviour in mice with heterozygous 'knockout' of the schizophrenia risk gene neuregulin-1. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 462-466.
- 260 Tsai MS, Shamon-Taylor LA, Mehmi I, Tang CK, Lupu R. Blockage of heregulin expression inhibits tumorigenicity and metastasis of breast cancer. Oncogene 2003; 22: 761-768.
- 261 Frensing T, Kaltschmidt C, Schmitt-John T. Characterization of a neuregulin-1 gene promoter: positive regulation of type I isoforms by NF-kappaB. Biochim Biophys Acta 2008; 1779: 139-144.
- 262 Li D, Collier DA, He L. Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet 2006: 15: 1995-2002
- 263 Munafò MR, Thiselton DL, Clark TG, Flint J. Association of the NRG1 gene and schizophrenia: a meta-analysis. Mol Psychiatry 2006: 11: 539-546.
- 264 Munafò MR, Attwood AS, Flint J. Neuregulin 1 genotype and schizophrenia. Schizophr Bull 2008; 34: 9-12.
- 265 Eastwood SL, Salih T, Harrison PJ. Differential expression of calcineurin A subunit mRNA isoforms during rat hippocampal and cerebellar development. Eur J Neurosci 2005; 22: 3017-3024.
- 266 Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 2005; 6: 267-276.
- 267 Wu HY, Tomizawa K, Oda Y, Wei FY, Lu YF, Matsushita M et al. Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J Biol Chem 2004; 279: 4929-
- 268 Anantharam V, Lehrmann E, Kanthasamy A, Yang Y, Banerjee P, Becker KG et al. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson's disease. Neurochem Int 2007; **50**: 834-847.
- 269 Eastwood SL, Burnet PW, Harrison PJ. Decreased hippocampal expression of the susceptibility gene PPP3CC and other calcineurin subunits in schizophrenia. Biol Psychiatry 2005; 57:
- 270 Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T et al. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci USA 2007; 104: 2815-2820.
- 271 Kozlovsky N, Scarr E, Dean B, Agam G. Postmortem brain calcineurin protein levels in schizophrenia patients are not different from controls. Schizophr Res 2006; 83: 173-177.
- 272 Murata M, Tsunoda M, Sumiyoshi T, Sumiyoshi C, Matsuoka T, Suzuki M et al. Calcineurin A gamma and B gene expressions in the whole blood in Japanese patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1000-1004.
- 273 Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA 2003; 100: 8993-8998.
- 274 Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N et al. Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatry 2007; 12: 891-893.
- 275 Liu YL, Fann CS, Liu CM, Chang CC, Yang WC, Hung SI et al. More evidence supports the association of PPP3CC with schizophrenia. Mol Psychiatry 2007; 12: 966-974.
- 276 Mathieu F, Miot S, Etain B, El Khoury MA, Chevalier F, Bellivier F et al. Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder. Behav Brain Funct 2008; 4: 2.
- 277 Kinoshita Y, Suzuki T, Ikeda M, Kitajima T, Yamanouchi Y, Inada T et al. No association with the calcineurin A gamma subunit gene (PPP3CC) haplotype to Japanese schizophrenia. J Neural Transm 2005; 112: 1255-1262.
- 278 Xi Z, Yu L, Shi Y, Zhang J, Zheng Y, He G et al. No association between PPP3CC and schizophrenia in the Chinese population. Schizophr Res 2007; 90: 357-359.
- 279 Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C et al. No significant association of 14 candidate genes with schizophrenia

- in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 2008; 165: 497-506.
- 280 Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T et al. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 2001; 107: 617-629.
- 281 Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA 2003; 100: 8987-8992.
- 282 Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL. Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 2004; 113: 913-923.
- 283 Hornstein M, Hoffmann MJ, Alexa A, Yamanaka M, Müller M, Jung V et al. Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics 2008; 5: 123-136.
- 284 Leroux-Nicollet I, Costentin J. Transient expression of the vesicular monoamine transporter during development in the rat thalamus and cortex. Neurosci Lett 1998; 248: 167-170.
- 285 Verney C, Lebrand C, Gaspar P. Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat Rec 2002: 267: 87-93.
- 286 Eells JB. The control of dopamine neuron development, function and survival: insights from transgenic mice and the relevance to human disease. Curr Med Chem 2003; 10: 857-870.
- 287 Bly M. Mutation in the vesicular monoamine gene, SLC18A1, associated with schizophrenia. Schizophr Res 2005; 78:
- 288 Richards M, Iijima Y, Kondo H, Shizuno T, Hori H, Arima K et al. Associationstudy of the vesicular monoamine transporter 1 (VMAT1) gene with schizophrenia in a Japanese population. Behav Brain Funct 2006; 2: 39.
- 289 Chen SF, Chen CH, Chen JY, Wang YC, Lai IC, Liou YJ et al. Support for association of the A277C single nucleotide polymorphism in human vesicular monoamine transporter 1 gene with schizophrenia. Schizophr Res 2007; 90: 363-365.
- 290 Lohoff FW, Weller AE, Bloch PJ, Buono RJ, Doyle GA, Ferraro TN et al. Association between polymorphisms in the vesicular $monoamine \quad transporter \quad 1 \quad gene \quad (VMAT1/SLC18A1) \quad on$ chromosome 8p and schizophrenia. Neuropsychobiology 2008; **57**: 55-60.
- 291 Talkowski ME, Kirov G, Bamne M, Georgieva L, Torres G, Mansour H et al. A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum Mol Genet 2008; 17: 747-758.
- 292 Lohoff FW, Dahl JP, Ferraro TN, Arnold SE, Gallinat J, Sander T et al. Variations in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) are associated with bipolar i disorder. Neuropsychopharmacology 2006; 31: 2739-2747.
- 293 Lohoff FW, Lautenschlager M, Mohr J, Ferraro TN, Sander T, Gallinat J. Association between variation in the vesicular monoamine transporter 1 gene on chromosome 8p and anxietyrelated personality traits. Neurosci Lett 2008; 434: 41-45.
- 294 Cordeiro ML, Gundersen CB, Umbach JA. Convergent effects of lithium and valproate on the expression of proteins associated with large dense core vesicles in NGF-differentiated PC12 cells. Neuropsychopharmacology 2004; 29: 39-44.
- 295 Adegbola A, Gao H, Sommer S, Browning M. A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 2008; 146: 505-511.
- 296 Nilsson O, Jakobsen AM, Kölby L, Bernhardt P, Forssell-Aronsson E, Ahlman H. Importance of vesicle proteins in the diagnosis and treatment of neuroendocrine tumors. Ann N Y Acad Sci 2004; 1014: 280-283.
- 297 Zohar AH, Dina C, Rosolio N, Osher Y, Gritsenko I, Bachner-Melman R et al. Tridimensional personality questionnaire trait of harm avoidance (anxiety proneness) is linked to a locus on chromosome 8p21. Am J Med Genet B Neuropsychiatr Genet 2003: 117: 66-69.
- 298 Ressler KJ, Nemeroff CB. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 2000; 12: 2-19.

- 299 Clark DA, Arranz MJ, Mata I, Lopéz-Ilundain J, Pérez-Nievas F, Kerwin RW. Polymorphisms in the promoter region of the alpha1A-adrenoceptor gene are associated with schizophrenia/ schizoaffective disorder in a Spanish isolate population. *Biol Psychiatry* 2005; 58: 435–439.
- 300 Hong CJ, Wang YC, Liu TY, Liu HC, Tsai SJ. A study of alphaadrenoceptor gene polymorphisms and Alzheimer disease. J Neural Transm 2001; 108: 445–450.
- 301 Bolonna AA, Arranz MJ, Munro J, Osborne S, Petouni M, Martinez M et al. No influence of adrenergic receptor polymorphisms on schizophrenia and antipsychotic response. Neurosci Lett 2000; 280: 65–68.
- 302 Hsu JW, Wang YC, Lin CC, Bai YM, Chen JY, Chiu HJ et al. No evidence for association of alpha 1a adrenoceptor gene polymorphism and clozapine-induced urinary incontinence. Neuropsychobiology 2000; 42: 62–65.
- 303 Huang K, Shi Y, Tang W, Tang R, Guo S, Xu Y et al. No association found between the promoter variants of ADRA1A and schizophrenia in the Chinese population. *J Psychiatr Res* 2008; 42: 384–388.
- 304 Friedman JI, Adler DN, Davis KL. The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer's disease. *Biol Psychiatry* 1999; **46**: 1243–1252.
- 305 Knauber J, Müller WE. Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the alpha (1b)-adrenoceptor. Eur Neuropsychopharmacol 2000; 10: 423–427.
- 306 Roehrborn CG, Prajsner A, Kirby R, Andersen M, Quinn S, Mallen S. A double-blind placebo-controlled study evaluating the onset of action of doxazosin gastrointestinal therapeutic system in the treatment of benign prostatic hyperplasia. Eur Urol 2005; 48: 445–452.
- 307 Hui H, Fernando MA, Heaney AP. The alpha1-adrenergic receptor antagonist doxazosin inhibits EGFR and NF-kappaB signalling to induce breast cancer cell apoptosis. *Eur J Cancer* 2008; 44: 160–166.
- 308 Verhoeven K, De Jonghe P, Van de Putte T, Nelis E, Zwijsen A, Verpoorten N *et al.* Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10. *Am J Hum Genet* 2003; **73**: 926–932.
- 309 Adithi M, Venkatesan N, Kandalam M, Biswas J, Krishnakumar S. Expressions of Rac1, Tiam1 and Cdc42 in retinoblastoma. Exp Eye Res 2006; 83: 1446–1452.
- 310 Egleton RD, Brown KC, Dasgupta P. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis. *Trends Pharmacol Sci* 2008; 29: 151–158.
- 311 Faraone SV, Su J, Taylor L, Wilcox M, Van Eerdewegh P, Tsuang MT. A novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families. *Hum Hered* 2004; 57: 59–68.
- 312 Shi J, Hattori E, Zou H, Badner JA, Christian SL, Gershon ES *et al.*No evidence for association between 19 cholinergic genes and bipolar disorder. *Am J Med Genet B Neuropsychiatr Genet* 2007; 144: 715–723.
- 313 Blaveri E, Kalsi G, Lawrence J, Quested D, Moorey H, Lamb G et al. Genetic association studies of schizophrenia using the 8p21-22 genes: prepronociceptin (PNOC), neuronal nicotinic cholinergic receptor alpha polypeptide 2 (CHRNA2) and arylamine N-acetyltransferase 1 (NAT1). Eur J Hum Genet 2001; 9: 469–472.
- 314 Lohoff FW, Ferraro TN, McNabb L, Schwebel C, Dahl JP, Doyle GA et al. No association between common variations in the neuronal nicotinic acetylcholine receptor alpha2 subunit gene (CHRNA2) and bipolar I disorder. Psychiatry Res 2005; 135: 171–177.
- 315 Cook LJ, Ho LW, Wang L, Terrenoire E, Brayne C, Evans JG et al. Candidate gene association studies of genes involved in neuronal cholinergic transmission in Alzheimer's disease suggests choline acetyltransferase as a candidate deserving further study. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 5–8.
- 316 Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 2008; 65: 45–53.

- 317 Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron 2007; 54: 713–720.
- 318 Díaz-Otero F, Quesada M, Morales-Corraliza J, Martínez-Parra C, Gómez-Garre P, Serratosa JM. Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene. *Epilepsia* 2008; **49**: 516–520.
- 319 Russo P, Catassi A, Cesario A, Servent D. Development of novel therapeutic strategies for lung cancer: targeting the cholinergic system. *Curr Med Chem* 2006; **13**: 3493–3512.
- 320 Paleari L, Grozio A, Cesario A, Russo P. The cholinergic system and cancer. Semin Cancer Biol 2008; 18: 211–217.
- 321 Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 633–637.
- 322 Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N *et al.* Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. *Mol Psychiatry* 2005; **10**: 486–499.
- 323 Lam DC, Girard L, Ramirez R, Chau WS, Suen WS, Sheridan S et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res 2007; 67: 4638–4647.
- 324 Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. *Cancer Res* 2008; **68**: 4693–4700.
- 325 Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I. Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. *Dev Biol* 2008; **320**: 60–71.
- 326 Wong YF, Cheung TH, Lo KW, Yim SF, Siu NS, Chan SC *et al.* Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genomewide gene expression profiling. *Oncogene* 2007; **26**: 1971–1982.
- 327 Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S et al. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 2007; 28: 2459–2466.
- 328 Tochigi M, Iwamoto K, Bundo M, Sasaki T, Kato N, Kato T. Gene expression profiling of major depression and suicide in the prefrontal cortex of postmortem brains. *Neurosci Res* 2008; **60**: 184–191.
- 329 Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. *Brain Res Bull* 2006; 70: 221–227.
- 330 Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. *Nat Neurosci* 2008; 11: 429–439.
- 331 Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A, Worley P et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum Mol Genet 1997; 6: 2205–2212.
- 332 Gurling HM, Critchley H, Datta SR, McQuillin A, Blaveri E, Thirumalai S et al. Genetic association and brain morphology studies and the chromosome 8p22 pericentriolar material 1 (PCM1) gene in susceptibility to schizophrenia. Arch Gen Psychiatry 2006; 63: 844–854.
- 333 Huang KP, Chase AJ, Cross NC, Reiter A, Li TY, Wang TF *et al.* Evolutional change of karyotype with t(8;9)(p22;p24) and HLA-DR immunophenotype in relapsed acute myeloid leukemia. *Int J Hematol* 2008; **88**: 197–201.
- 334 Shibata N, Kawarai T, Meng Y, Lee JH, Lee HS, Wakutani Y et al. Association studies between the plasmin genes and late-onset Alzheimer's disease. Neurobiol Aging 2007; 28: 1041–1043.
- 335 Clarimón J, Bertranpetit J, Calafell F, Boada M, Tàrraga L, Comas D. Association study between Alzheimer's disease and genes involved in Abeta biosynthesis, aggregation and degradation: suggestive results with BACE1. J Neurol 2003; 250: 956–9561.
- 336 Ducray F, Idbaih A, de Reyniès A, Bièche I, Thillet J, Mokhtari K et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer 2008; 7: 41.

- 337 Svensson A, Norrby M, Libelius R, Tågerud S. Secreted frizzled related protein 1 (Sfrp1) and Wnt signaling in innervated and denervated skeletal muscle. J Mol Histol 2008; 39: 329-337.
- 338 Takagi H, Sasaki S, Suzuki H, Toyota M, Maruyama R, Nojima M et al. Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. I Gastroenterol 2008; 43: 378-389.
- 339 Dalgin GS, Drever M, Williams T, King T, Delisi C, Liou LS. Identification of Novel Epigenetic Markers for Clear Cell Renal Cell Carcinoma. J Urol 2008; 180: 1126-1130.
- 340 Sur M, Rubenstein JL. Patterning and plasticity of the cerebral cortex. Science 2005; 310: 805-810.
- 341 Rash BG, Grove EA. Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 2006; 16: 25-34.
- 342 Borello U, Cobos I, Long JE, Murre C, Rubenstein JL. FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development. Neural Develop 2008; 3: 17.
- 343 Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS. Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol Sci 2003; 24: 486–492.
- 344 Strous RD, Greenbaum L, Kanyas K, Merbl Y, Horowitz A, Karni O et al. Association of the dopamine receptor interacting protein gene, NEF3, with early response to antipsychotic medication. Int J Neuropsychopharmacol 2007; 10: 321–333.
- 345 Hagihara A, Miyamoto K, Furuta J, Hiraoka N, Wakazono K, Seki S et al. Identification of 27 5' CpG islands aberrantly methylated and 13 genes silenced in human pancreatic cancers. Oncogene 2004; 23: 8705-8710.
- 346 Happè F. An advanced test of theory of mind: understanding of story characters thoughts and feelings by able autistics, mentally handicapped and normal children and adults. J Autism Dev Disord 1994; 24: 129-154.
- 347 Brüne M, Brüne-Cohrs U. Theory of mind-evolution, ontogeny, brain mechanisms and psychopathology. Neurosci Biobehav Rev 2006; 30: 437-455.
- 348 Pinkham AE, Hopfinger JB, Pelphrey KA, Piven J, Penn DL. Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophr Res 2008; 99: 164-175.
- 349 Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S et al. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 2006; 1116: 166-176.
- 350 Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007; 54: 387-402.
- 351 Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM. Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry 2006; 59: 468-476.
- 352 Klejbor I, Myers JM, Hausknecht K, Corso TD, Gambino AS, Morys J et al. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons-inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem 2006; 97: 1243-1258.
- 353 Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002; 5: 267-271.
- 354 Swerdlow NR, Geyer MA. Using an animal model of deficient sensorimotor gating to study the pathophysiology new treatments of schizophrenia. Schizophr Bull 1998; 24:
- 355 Sanchez-Pernaute R, Lee H, Patterson M, Reske-Nielsen C, Yoshizaki T, Sonntag KC et al. Parthenogenetic dopamine neurons from primate embryonic stem cells restore function experimental Parkinson's disease. Brain 2008; 131: 2127-2139. [E-pub ahead of print] doi:10.1093/brain/awn144.
- 356 Grothe C, Timmer M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res Rev 2007; 54: 80-91.
- 357 Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA 2004; 101: 15506-15511.

- 358 Aston C, Jiang L, Sokolov BP. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 2005: 10: 309-322.
- 359 Riva MA, Molteni R, Bedogni F, Racagni G, Fumagalli F. Emerging role of the FGF system in psychiatric disorders. Trends Pharmacol Sci 2005; 26: 228-231.
- 360 Cholfin JA, Rubenstein JL. Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 2008; 509: 144-155.
- 361 Goldman-Rakic PS. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 1996; **351**: 1445-1453.
- 362 Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27: 555-579.
- 363 Rudebeck PH, Buckley MJ, Walton ME, Rushworth MF. A role for the macaque anterior cingulate gyrus in social valuation. Science 2006: 313: 1310-1312.
- 364 Heer R, Douglas D, Mathers ME, Robson CN, Leung HY. Fibroblast growth factor 17 is over-expressed in human prostate cancer. I Pathol 2004; 204: 578-586.
- 365 Abate-Shen C, Shen MM. FGF signaling in prostate tumorigenesis-new insights into epithelial-stromal interactions. Cancer Cell 2007; 12: 495-497.
- 366 Sahadevan K, Darby S, Leung HY, Mathers ME, Robson CN, Gnanapragasam VJ. Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J Pathol 2007; 213: 82-90.
- 367 Chase A, Grand FH, Cross NC. Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 2007; 110: 3729-3734.
- 368 Pennisi E. Breakthrough of the year. Human genetic variation. Science 2007; 318: 1842-1843.
- 369 Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13: 558-569.
- 370 Estivill X, Armengol L. Copy number variants and common disorders: filling the gaps and exploring complexity in genomewide association studies. PLoS Genet 2007; 3: 1787-1799.
- Park JK, Lee HJ, Kim JW, Park YH, Lee SS, Chang HI et al. Differences in p53 gene polymorphisms between Korean schizophrenia and lung cancer patients. Schizophr Res 2004; 67: 71-74.
- 372 Cui DH, Jiang KD, Jiang SD, Xu YF, Yao H. The tumor suppressor adenomatous polyposis coli gene is associated with susceptibility to schizophrenia. Mol Psychiatry 2005; 10: 669-677.
- Numata S, Ueno S, Iga J, Yamauchi K, Hongwei S, Hashimoto R et al. TGFBR2 gene expression and genetic association with schizophrenia. I Psychiatr Res 2008; 42: 425-432.
- 374 Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 2000; 77: 81-137.
- 375 Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253: 49-53.
- 376 Kastan M. Wild-type p53: tumors can't stand it. Cell 2007; 128: 837-840.
- Plummer NW, Gallione CJ, Srinivasan S, Zawistowski JS, Louis DN, Marchuk DA. Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. Am J Pathol 2004; 165: 1509-1518.
- 378 Yoon H, Liyanarachchi S, Wright FA, Davuluri R, Lockman JC, de la Chapelle A et al. Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl Acad Sci USA 2002; 99: 15632-15637.
- 379 Chiu HJ, Wang YC, Chen JY, Hong CJ, Tsai SJ. Association study of the p53-gene Pro72Arg polymorphism in schizophrenia. Psychiatry Res 2001; 105: 279-283.
- 380 Papiol S, Arias B, Barrantes-Vidal N, Guitart M, Salgado P, Catalán R et al. Analysis of polymorphisms at the tumor suppressor gene p53 (TP53) in contributing to the risk for schizophrenia and its associated neurocognitive deficits. Neurosci Lett 2004; 363: 78-80.

- 381 Yang Y, Xiao Z, Chen W, Sang H, Guan Y, Peng Y et al. Tumor suppressor gene TP53 is genetically associated with schizophrenia in the Chinese population. Neurosci Lett 2004; 369: 126–131.
- 382 Ni X, Trakalo J, Valente J, Azevedo MH, Pato MT, Pato CN et al. Human p53 tumor suppressor gene (TP53) and schizophrenia: case-control and family studies. Neurosci Lett 2005; 388: 173–178.
- 383 Tabarés-Seisdedos R, Escámez T, Martínez-Giménez JA, Balanzá V, Salazar J, Selva G et al. Variations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar subjects from mediterranean Spain: a preliminary study. Neuroscience 2006; 139: 1289–1300.
- 384 Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. *Nat Rev Cancer* 2006; **6**: 184–192.
- 385 van Diepen MT, Eickholt BJ. Function of PTEN during the formation and maintenance of neuronal circuits in the brain. Dev Neurosci 2008: 30: 59-64.
- 386 Avogaro A, de Kreutzenberg SV, Fadini GP. Oxidative stress and vascular disease in diabetes: is the dichotomization of insulin signaling still valid? *Free Radic Biol Med* 2008; 44: 1209–1215.
- 387 Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A *et al.* AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high-density schizophrenia families. *Biol Psychiatry* 2008; **63**: 449–457.
- 388 Tamguney T, Stokoe D. New insights into PTEN. J Cell Sci 2007; 120: 4071–4079.
- 389 Haas-Kogan D, Stokoe D. PTEN in brain tumors. Expert Rev Neurother 2008; 8: 599–610.
- 390 Asher G, Lotem J, Kama R, Sachs L, Shaul Y. NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 2002; 99: 3099–3104.
- 391 Fagerholm R, Hofstetter B, Tommiska J, Aaltonen K, Vrtel R, Syrjäkoski K et al. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 2008; 40: 844–853.
- 392 Pae CU, Yu HS, Kim JJ, Lee CU, Lee SJ, Jun TY et al. Quinone oxidoreductase (NQO1) gene polymorphism (609C/T) may be associated with tardive dyskinesia, but not with the development of schizophrenia. Int J Neuropsychopharmacol 2004; 7: 495–500.
- 393 Liou YJ, Wang YC, Lin CC, Bai YM, Lai IC, Liao DL et al. Association analysis of NAD(P)Hratioquinone oxidoreductase (NQO1) Pro187Ser genetic polymorphism and tardive dyskinesia in patients with schizophrenia in Taiwan. Int J Neuropsychopharmacol 2005; 8: 483–486.
- 394 Hori H, Shinkai T, Matsumoto C, Ohmori O, Nakamura J. No association between a functional NAD (P)H: quinone oxidoreductase gene polymorphism (Pro187Ser) and tardive dyskinesia. Neuromolecular Med 2006; 8: 375–380.
- 395 Usadel H, Brabender J, Danenberg KD, Jerónimo C, Harden S, Engles J et al. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res 2002; 62: 371–375.
- 396 Harder J, Opitz OG, Brabender J, Olschewski M, Blum HE, Nomoto S et al. Quantitative promoter methylation analysis of hepatocellular carcinoma, cirrhotic and normal liver. Int J Cancer 2008; 122: 2800–2804.
- 397 Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000; 11: 273–282.
- 398 Harrison PJ, Law AJ. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 2006; 60: 132–140.
- 399 Britsch S. The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 2007; 190: 1–65.
- 400 Huang HE, Chin SF, Ginestier C, Bardou VJ, Adélaïde J, Iyer NG et al. A recurrent chromosome breakpoint in breast cancer at the NRG1/ neuregulin 1/heregulin gene. Cancer Res 2004; 64: 6840–6844.
- 401 Pole JC, Courtay-Cahen C, Garcia MJ, Blood KA, Cooke SL, Alsop AE et al. High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex

- pattern of loss, gain and translocation. *Oncogene* 2006; **25**: 5693–5706.
- 402 Tan W, Wang Y, Gold B, Chen J, Dean M, Harrison PJ et al. Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. J Biol Chem 2007; 282: 24343–24351.
- 403 Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proc Natl Acad Sci USA 2006; 103: 6747–6752.
- 404 Kanakry CG, Li Z, Nakai Y, Sei Y, Weinberger DR. Neuregulin-1 regulates cell adhesion via an ErbB2/phosphoinositide-3 kinase/ Akt-dependent pathway: potential implications for schizophrenia and cancer. PLoS ONE 2007; 2: 1369.
- 405 Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358: 1148-1159.
- 406 Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008; 320: 97–100.
- 407 Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67: 1424–1429.
- 408 Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111: 3183–3189.
- 409 Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 14.
- 410 Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130: 2113–2129.
- 411 Marcucci G, Radmacher MD, Maharry K, Mrózek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.
- 412 Li H, Yamagata T, Mori M, Yasuhara A, Momoi MY. Mutation analysis of methyl-CpG binding protein family genes in autistic patients. *Brain Dev* 2005; **27**: 321–325.
- 413 Shibayama A, Cook Jr EH, Feng J, Glanzmann C, Yan J, Craddock N et al. MECP2 structural and 3'-UTR variants in schizophrenia, autism and other psychiatric diseases: a possible association with autism. Am J Med Genet B Neuropsychiatr Genet 2004; 128: 50–53
- 414 Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. *Epigenetics* 2006; 1: 1–11.
- 415 Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–188.
- 416 http://microrna.sanger.ac.uk/ (last accessed 26 July 2008).
- 417 Sutcliffe JS. Genetics. Insights into the pathogenesis of autism. *Science* 2008; **321**: 208–209.
- 418 Perkins DO, Jeffries C, Sullivan P. Expanding the 'central dogma': the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. *Mol Psychiatry* 2005; 10: 69–78.
- 419 Rogaev EI. Small RNAs in human brain development and disorders. *Biochemistry (Mosc)* 2005; **70**: 1404–1407.
- 420 Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 2007; 8: R27.
- 421 Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E et al. Brain expressed microRNAs implicated in schizophrenia etiology. *PLoS ONE* 2007; 2: 873.
- 422 Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ et al. Dysregulation of miRNA 181b in the temp-

- oral cortex in schizophrenia. Hum Mol Genet 2008; 17: 1156-1168.
- 423 Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40: 751–760.
- 424 Lin SL, Chang SJ, Ying SY. First in vivo evidence of microRNAinduced fragile X mental retardation syndrome. Mol Psychiatry 2006; **11**: 616–617.
- 425 Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S et al. MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet 2008; 17: 1192-1199.
- 426 Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 2008; 9: 153-161.
- 427 Todd JA. Statistical false positive or true disease pathway? Nat Genet 2006; 38: 731-733.

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http:// www.nature.com/mp)