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Defects in genetic and developmental processes are thought to contribute susceptibility to
autism and schizophrenia. Presumably, owing to etiological complexity identifying suscept-
ibility genes and abnormalities in the development has been difficult. However, the importance
of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well
established. There are 484 annotated genes located on 8p; many are most likely oncogenes
and tumor-suppressor genes. Molecular genetics and developmental studies have identified
21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2,
EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1
and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders
(schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders
(Parkinson’s and Alzheimer’s disease) and cancer. Furthermore, at least seven nonprotein-
coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number
variants, microdeletions or microduplications, might also contribute to autism, schizophrenia
and other human diseases including cancer. In this review, we consider the current state of
evidence from cytogenetic, linkage, association, gene expression and endophenotyping
studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a
mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social
behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the
biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite
the shortcomings of this evidence.
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Introduction

Autism and schizophrenia are complex neuropsy-
chiatric syndromes affecting between 0.3 and 0.6% of
children and approximately 1% of the adult world
population.1,2 These disorders are chronic, debilitat-
ing conditions with profound human and economic
consequences.3,4 Therefore, each discovery that
further elucidates disease mechanisms, and each
new molecular diagnostic test or therapeutic advance

has the potential to improve the quality of life for
many people.5,6

The assumption that neuropsychiatric disorders are
phenotypically heterogeneous with overlapping find-
ings suggests the participation of more than one
etiological factor and pathophysiological process,
some of them being partly shared across the tradi-
tional classification categories.7,8 Probably, as in
human cancers, the heterogeneity in clinical results
and treatment outcomes stems directly from the
underlying variation in disorder biology.9 It is no
wonder then that this remarkable biologic hetero-
geneity of autism (autism spectrum disorders), schi-
zophrenia (schizophrenias) or bipolar disorder
(bipolar spectrum) is intimately related to the com-
plexity of the genetic control of brain development
and function. For instance, several of the suscept-
ibility loci and genes in these disorders play a
principal role in the development, plasticity and
maintenance of the central nervous system (CNS).10–13

However, the molecular mechanics, the neural
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systems and the concepts used are, with few excep-
tions, excessively vague.14,15

Recognizing these limitations and approaches, we
focus our attention on the 8p chromosome region for
several reasons. First, human chromosome 8 spans
approximately 145 million base pairs (bp), which
represents between 4.5 and 5.0% of the genome. The
short arm spans approximately 45.2 million base pairs
and only represents 1.5% of the genome, and includes
484 genes (110 pseudogenes). Many of these genes
encode proteins that control cell proliferation, apop-
tosis or both, and may play important roles in several
normal and pathological processes such as develop-
ment or signaling in the CNS and immune response,
and cancer and developmental neuropsychiatric dis-
orders, respectively. Currently, it is estimated that
there are approximately 41 (8.47%) genes on chromo-
some 8p involved in the genetic control of cerebral
development and function, and approximately
80 (15.53%) genes involved in cancer biology
(see Table 1 and Supplementary Table S1 at Supple-
mentary Information). It is important to bear in mind
that 8p has lower rates of base pairs and genes than
other chromosomal regions with significant linkage to
schizophrenia (1q, 6p and 22q), autism (7q and 15q)
and bipolar disorder (13q). Only 18p, associated with
bipolar disorder risk, has lower rates than 8p
(Supplementary Table S2). Although chromosome 8
is typical in several characteristics, such as length,
gene or repeat content, a unique feature of this
chromosome is a big region of approximately 15
megabases on distal 8p that appears to have a high
mutation rate. Likewise, this distal subregion on 8p
shows an immense divergence between human and
chimpanzee, suggesting that the high mutation rates
at distal 8p have contributed to the evolution of the
primate brain.16 Interestingly, a high mutation rate has
been associated with high homologous recombination
in the human genome.17 Consequently, an extraordin-
ary recombination rate could increase the duplication
genetic process, and allow us a better understanding
of the biological connections between 8p, cancer and
mental illness at a molecular level.

Second, various studies have recently evaluated the
contribution of structural variation of DNA (that is,
insertions and deletions of DNA, collectively termed
copy number variants (CNVs), as well as balanced
rearrangements such as inversions) in the human
genetic variability and in the susceptibility to com-
mon and complex diseases such as cancer, obesity or
neuropsychiatric disorders.18–21 Now, it seems most
likely that this structural variation contributes more
to genetic diversity in healthy individuals and to
phenotypic variation in unhealthy individuals than
single-nucleotide polymorphisms.22 Subsequently,
chromosomal 8p region is one of the ‘hotspot’ regions
of CNVs in the human genome, because it contains
clusters of three to four copy number polymorphisms
(Supplementary Table S3). Other regions were 6cen
and 15q13-14, which are also related with schizo-
phrenia and autism.18 Moreover, many of the genes

affected by the identified structural variants encode
proteins that have been shown to mediate response to
environmental challenge (‘environmental sensor
genes’), such as immune response, perception of
smell and perception of chemical stimuli.22,23 It is
interesting to take note of the presence of olfactory
dysfunction in autism24 and schizophrenia sub-
jects.25,26 Furthermore, these neuropsychiatric disor-
ders may be associated with various immune system
anomalies.27,28 The new generation sequencing tech-
nologies have detected 343 copy number variations of
146 genes on chromosome 8p. Several of these genes
CNVs have been associated with schizophrenia,10

autism spectrum disorders,29 cancer21,30 and Crohn’s
disease31 (for updated summary, see Supplementary
Table S4). It is noted that, 8p is also enriched in
single-nucleotide variants across the entire gen-
ome.32,33 The short arm of chromosome 8p is one of
the most enriched regions in structural and single-
nucleotide variation across the human genome, but,
in any case, little is known about the role of such
genetic diversity in disease association.
Third, given that there are genetic factors to

schizophrenia and other major neuropsychiatric
disorders, the remaining questions are which are the
related chromosomal regions and how will the genes
be identified?34 In relation to this, 8p is among the
best-supported genomic regions implicated in schizo-
phrenia and bipolar risk,35–40 as well as in other
important human diseases such as cancer.41,42 For
example, the ‘Top Results’ list of Schizophrenia Gene
Database,43,44 displaying the 27 genes most strongly
associated with schizophrenia, includes three 8p
genes (1st VMAT1/SLC18A1; 15th NRG1; 26th
PPP3CC). It is noted that, it is the chromosome
region (arm) with a greater number of schizophrenia
susceptibility genes in this ranking. In addition, Bray
et al.45 observed that variant(s) within 8p may
modulate schizophrenia risk though a transacting
effect on dystrobrevin-binding protein 1 (DTNBP1)
expression. DTNBP1 is one of the best-supported
susceptibility genes for schizophrenia, bipolar
disorder and major depressive disorder.40,46–48 These
data provide complementary evidence for chromo-
some 8p as a neuropsychiatry susceptibility locus.
Fourth, the animal models of human behavioral

disorders represent an obvious step forward in the
arena of the study of the genetics of behavioral
domains.49 We recently described a mouse mutant
that lacks the Fgf17 gene (Fgf17 is a member of the
fibroblast growth factor (Fgf) family of genes), which
is located in 8p21.3. It has abnormalities in the
patterning of frontal cortex (that is, a reduction in
dorsal and dorsomedial frontal cortex (FC) and FC
projections to subcortical targets, and a rostromedial
shift of caudal cortical areas) and social behavior
deficits.50–52 Thus, this type of developmental lesion
may be a relevant mechanism for some forms of
autism, schizophrenia and related syndromes.
From these observations, it is reasonable to expect

that 8p chromosome, as a whole, could be a
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Table 1 8p Genes involved in cerebral development, cancer, neuropsychiatric and brain disorders

LOCUS GENE 
SYMBOL 

CEREBRAL 
DEVELOPMENT 
AND FUNCTION 

CANCER NEUROPSYCHIATRIC 
DISORDERS 

*CEREBRAL 
DISORDERS  

DLGAP2
CLN8
mir-596      

8p23.3 
(4 
GENES) 

ARHGEF10
8p23.2 
(1 GENE) 

CSMD1    

DEFB103A      
MCPH1 
ANGPT2    
DEFB1    
DEFA6    
DEFA1    
DEFA3    
DEFB4    
CLDN23      
MFHAS1    
mir-597      
mir-124-1   
MSRA     
SOX7    
PINX1    
mir-598   
GATA4    

8p23.1 
(18 
GENES) 

CTSB  
DLC1    
mir-383    
TUSC3    
MSR1
FGF20 
PDGFRL    
MTUS1    
PCM1
NAT1

8p22 
(10 
GENES) 

NAT2
PSD3    
ChGn    
LPL
VMAT1/SLC18A1 
LZTS    
GFRA2
DOK2    
NPM2    
FGF17 
mir-320 
PIWIL2    
PHYHIP 
PPP3CC 
KIAAA967    
BIN3 
EGR3
PEBP4
RHOBTB     
TNFRSF10C    
TNFRSF10D    

8p21.3 
(21 
GENES) 

LOXL2    
NKX3-1    
STC1    
ADAM28    
ADAM7    
NEF3
NEFL
GNRH1    
BNIPEL    
PNMA2  
DPYSL2
ADRA1A
PTK2B CNVs  

8p21.2 
(13 
GENES) 

CHRNA2 
CLU
SCARA3    
PBK    
PNOC
ZNF395    
FZD3 
EXTL3     
HMBOX1    

8p21.1 
(9 
GENES) 

KIF13B    
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significant opportunity to explore the relationship
among candidate genes, several neuropsychiatric
disorders and other human diseases, including
cancer, Parkinson’s disease and Alzheimer’s disease,
and to define new pathophysiology pathways.

Therefore, the main goal of this review is to
carefully provide a brief overview of previous find-
ings that support the role of 8p not only in genetic
susceptibility to neuropsychiatric disorders but also
to human cancer. Moreover, we aimed to analyze 21
candidate genes (ADRA1A, ARHGEF10, CHRNA2,
CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17,
FGF20, FGFR1, FZD3, LPL, NAT2, NEF3, NRG1,
PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1)
from a total of 484 genes located in this region, that
may lead to expression of different neuropsychiatric
phenotypes, ranging from autism to schizophrenia to
affective disorders. They were identified by a
systematic review in PubMed and in the Schizophre-
niaGene (SZGene),43 AlzheimerGene (AlzGene)53 and
Parkinson’s Disease (PDGene)54 Databases, supple-
mented with a manual search of reference lists. These
genes are likewise involved in the relevant metabolic
pathways and some aspects of the neural develop-
ment. In addition, there are seven microRNAs
(miRNAs) located on the short arm of chromo-
some 8. Two of these nonprotein-coding RNAs
(hsa-mir-124-1 and hsa-mir-320) are most likely to

be critical in the CNS development and in
various human disease states.55 We also present a
new developmental animal model that establishes a
relationship between a gene of this region (Fgf17) that
mediates the patterning of frontal cortex, and specific
components of social behavior. Finally, we discuss
the pertinence of 8p to understand the biological
connections between neuropsychiatric disorders and
cancer.

Chromosome 8p, neuropsychiatric disorders and
cancer

In recent years, as mentioned above, many studies
have identified a number of liability genes for major
neuropsychiatric disorders and other serious human
diseases, such as cancer, that are located on chromo-
some 8p. Then, an electronic search covering the
period 1963–July 2008 was conducted using Medline
database, supplemented with a manual search of
reference lists. The diagnostic terms autism (and
related disorders such as Asperger syndrome, Fragile
X mental retardation, Rett syndrome, Tuberous
Sclerosis Complex), schizophrenia, bipolar disorder
or manic depression, depression and cancer were
combined with keywords indicating chromosomal
relationship and genetic analysis (chromosome 8, 8p
chromosome, 8p genes, linkage and association

Table 1 Continued

GSR
WR N 
NRG1
FUT10    
DUSP26    
GPR124    
EIF4EBP1    
LSM1     
BAG4    
PPAPDC1    

8p12 
(11 
GENES) 

FGFR1 
TACC1    
ADAM9    
ADAM32    
ADAM5P     
ADAM18    
ADAM2    
C8ofr4    
SFRP1 
mir-486    
ANK1    
MYST3     
AP3M2    
PLAT
POLB
DKK4
CHRNB3 
CHRNA6 

8p11.23 
(17 
GENES) 

THAP1    
8p11.2-
p11.1 
(1 GEN) 

CEBPD    

TOTAL 
GENES 

105 41 80 21 25 

*Cerebral Disorders such as Epilepsy, Alzheimer Disease, Parkinson Disease, Down Syndrome and others.
Abbreviation: CNVs, copy number variants (see Ref.10).
Total number of genes on chromosome 8p=484; genes involved in cancer =80 (15.5%); genes involved in neuropsychiatric
disorders=21 (4.3%); genes involved in cerebral development and function= 41 (8.5%); genes involved in brain
disorders = 25 (5.2%).
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genetic studies). Our electronic and manual search
identified 639 references for neuropsychiatric disor-
ders and 867 for cancer. Further, we used the
information of three databases of genes: SZGene,
AlzGene and PDGene Databases.43,53,54

Cytogenetic studies

Kallmann’s syndrome. The study of rare
chromosomal or karyotypic abnormalities can
provide critical information about the localization of
disease genes.34 The region discussed—8p—is
involved in microdeletions that are present in
individuals with the Maestre de San Juan–
Kallmann–de Morsier syndrome.56 This is a
congenital disorder of hypothalamic function and
reduced pituitary gonadotropic activity with result-
ing association of hypogonadism, eunuchoidism
and anosmia (or hyposmia). Anosmia is caused
by a migration disturbance that affects the axon
projections of olfactory neurons to brain. Franz Josef
Kallmann57,58 was one of the first psychiatrists to
study the genetic basis of mental disorders, and he
reported some cases of schizophrenia and mental
retardation in individuals with this syndrome.
More recently, Cowen and Green59 have drawn
attention to some parallels between schizophrenia
and Kallmann’s syndrome, including the fact that
olfactory dysfunctions (that is, smell identification
deficits) are present in a subgroup of patients
with schizophrenia.60 Versiani et al.61 also confirm
the association of Kallmann’s syndrome and schizo-
phrenia, and abnormalities of cognition and behavior
such as learning disabilities. However, other authors
consider that this association is rare and confined to
olfactory dysfunction.62

Autism and other related syndromes. There are
several clinical reports associating chromosomal
interstitial 8p (p21-23, p12-23, p12-21.2)
rearrangements (that is, translocations, inversions,
deletions, duplications) with autism (reviewed by
Papanikolaou et al.63). It is noted that the autistic
patients of these cytogenetic studies have milder
phenotypes than other reported cases with
abnormalities in other chromosomes. These bands
might represent a critical region for social and
communication deficits indicating an autism
spectrum disorder, unrecognized until 3 or more
years and with a negative family history of autism.64

In a Finnish population sample,65 there is also
evidence that 8p anomalies are associated with
mental retardation epilepsy. The patients with mental
retardation epilepsy are distinguished from the
majority of epilepsy cases in that they suffer mental
deterioration following the onset of seizures. More-
over, the degree of mental deterioration correlates
with the severity of cerebral atrophy.66 Autism
includes a high prevalence of mental retardation,
with rate estimates of 40–55% or higher,67 and
comorbid epilepsy, observed in approximately 30%

of autistic subjects.68 Furthermore, the occurrence
of schizophrenia-like symptoms and secondary affec-
tive symptoms has been shown in patients with
epilepsy.69 Even more interestingly, a family history
of epilepsy is a significant risk factor for schizo-
phrenia.70

Aberrations in the short arm of chromosome 8 may
also be a relatively common cause of corpus callosum
malformations.71 Moreover, 8p21-p23 is a suitable
candidate locus for agenesis of the corpus callosum.72

The association of corpus callosum anomalies with
cognitive deficits, epilepsy, autistic-like behavior or
schizophrenia-like symptoms is relevant and well
known.73 Finally, several recent studies have detected
novel submicroscopic 8p abnormalities using a new
generation of microarray analysis. For example,
Butler et al.74 using an array comparative genomic
hybridization analysis in Prader-Willi syndrome,
detected that most Prader-Willi syndrome subjects
had CNVs on 8p and 3q. The autistic-like symptoma-
tology in Prader-Willi syndrome75 and the association
with schizophrenia and affective psychosis76 are also
well known.

Cancer. Despite 8p being a relatively small
chromosome arm, it is one of the most frequently
altered genomic regions in human cancer,41 and is
also rich in candidate oncogenes and tumor-
suppressor genes associated with the development
of certain types of cancers (see Table 1 and TS1 at
Supplementary Information). The high frequency of
cytogenetic aberrations and genomic rearrangements
(principally deletions and translocations) affecting 8p
in lung and prostate cancers suggests that this
region may harbor potential candidate genes
involved in the pathogenesis of these types of
cancer.77,78 However, the loss of heterozygosity
involving 8p is also a common feature of the
malignant progression of others, including breast
cancer,79 gastric cancer,80 colorectal cancer,81 bladder
carcinoma82 and hepatocellular carcinoma, especially
during metastasis.83

In spite of several methodological issues and
heterogeneous results, the epidemiological studies
of the relationships between schizophrenia and
cancer detected a reduced incidence of cancer
observed in patients with schizophrenia compared
with the general population (reviewed by Catts
and Catts,84 Jablensky and Lawrence,85 Grinshpoon
et al.86). It is intriguing that two rigorous population-
based studies found a significantly lower risk of
respiratory and prostate cancer in people with
schizophrenia and their relatives compared with
people without schizophrenia after adjustment for
confounder variables.87,88 More recently, the first
meta-analysis of cancer incidence rates in patients
with schizophrenia, their parents and siblings has
been published.89 Catts et al.89 report a discrepancy
between cancer risk exposure and cancer incidence
in schizophrenia, consistent with a possible
genetic protective effect. Although other possible
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explanations may be involved (that is, epidemio-
logical bias, cancer-protective effect of classical anti-
psychotic medications, obstetric complications and
lifestyle differences),90–92 the authors propose that the
genetic predisposition toward schizophrenia confers
genetically reduced susceptibility to cancer.

In contrast with schizophrenia, few studies have
explored in detail the cancer rates in patients with
autism, bipolar disorders or other neuropsychiatric
disorders. However, the co-occurrence of autism
spectrum phenotype and tuberous sclerosis complex
has been recognized for decades.93 Tuberous sclerosis
complex is an autosomal dominant inherited disorder
characterized by benign tumors that form during the
development (hamartomas) in various organs such as
brain (known as tubers). These brain lesions are
associated with epilepsy, cognitive disability and
autism.94 Despite the presence of several factors
among patients with bipolar disorder that might affect
the risk for cancer (that is, diet, smoking and
medications), several studies found a nonsignificant
statistical risk for cancer.87,95 Likewise, Carney and
Jones96 in a population-based controlled study found
that hyperlipidemia, lymphoma and metastatic can-
cer were the only medical conditions less likely to
occur in persons with bipolar disorder. More recently,
BarChana et al.97 found an enhanced risk for cancer
among patients with bipolar disorders. However, the
risk for breast cancer was higher, but not significantly,
than in the general female population. Then, no firm
conclusions could be drawn.

On the basis of these clinical and cytogenetic
findings, there is some evidence supporting 8p as a
schizophrenia/autism overlap risk region. Curiously,
the autistic patients with 8p rearrangements might
have a benign clinical presentation compared with
other autistic cases with abnormalities in other
chromosomes. In addition, the same genetic factors
located in this chromosomal region might induce
cancer in the general population, but have also a
possible protective effect for lung and prostate cancer
in individuals with schizophrenia and their relatives.
In this respect, 8p may represent a landmark for the
identification and cloning of genes involved in
cancer, schizophrenia and others.

Linkage studies
Linkage studies have provided evidence for one or
more loci in the 8p region that influence suscept-
ibility to several neuropsychiatric phenotypes.

Schizophrenia. The seminal study of Pulver et al.35

and three independent investigations have reported
logarithm of odds (LOD) scores above 3.038,98,99 and
another four have confirmed a LOD score above
1.5.36,38,100,101 Moreover, this region is supported by
the results of published meta-analyses of
schizophrenia linkage studies.102,103 However, a
published study has not been able to find significant
evidence for linkage on 8p region.104 It is important to
take into consideration that Kendler et al.105 found an

association between 8p22-21 locus and some clinical
features in 265 multiplex schizophrenia pedigrees.
More specifically, affected individuals from families
with evidence of linkage to 8p had significantly more
affective deterioration and thought disorders, a worse
outcome, and fewer depressive symptoms than
affected individuals from the other families in the
study. Furthermore, Chiu et al.106 have also shown
that schizophrenia susceptibility appears to be
associated with 8p21 region in some families, where
the affected siblings are more likely to have
experienced bizarre delusions, attendance to a
special school, affective symptoms early in the
course of illness and seizures.

Affective disorders. Although chromosome 8p
showed no evidence of linkage in a genome-wide
linkage scan study of schizophrenia and bipolar
people,102,107 five genome scan studies and one of
the two published meta-analyses supports this region
in bipolar disorder.108–113 Indeed, the psychotic
bipolar disorder subtype was further studied in a
genome-wide linkage analysis of 40 extended bipolar
pedigrees (only subjects with psychotic features were
considered affected), and the two strongest regions in
the genome were 9q31 and 8p21.112 These findings are
additionally supported by a new genome-wide
linkage scan in a large bipolar disorder sample from
the National Institute of Mental Health (Genetics
Initiative) that found a suggestion of linkage (8p22)
for bipolar patients with psychotic symptoms.114

In major depression, the 8p region is supported by
two genome-wide linkage studies with partially
shared samples of families with two or more probands
of early-onset recurrent major depression.115–117

Zubenko et al.116 reported a positive association
between a history of suicide attempts and several
chromosomal regions. It is noted that the highest
DLOD score (DLOD=5.08) was located at 8p22-p21
(D8S1145; 37.0 cM, 18.2 Mbps, P<0.0001). It is
relevant to take into account that suicide is a
prevalent outcome of neuropsychiatric disorders,
and that repetitive, self-injurious behavior may
appear in individuals with autism or related dis-
orders.118,119 The other positive linkage was obser-
ved in a secondary analysis after Holmans and
colleagues117 controlled for the sex of affected pair.
Their results suggest that the contribution of 8p loci
may be sex dependent, and that 8p contains genes
that contribute to susceptibility to severe and persis-
tent episodes of depression.

Other neuropsychiatric disorders. Other linkage
analyses have also shown linkage of other
neuropsychiatric disorders and developmental
cognitive deficits to chromosome 8p. Subsequently,
the region has been implicated in reading disability or
developmental dyslexia in individuals with
attention-deficit/hyperactivity disorder,120 anxiety-
related personality traits such as harm avoidance and
neuroticism,121–123 late-onset Alzheimer’s disease,124
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late-onset Alzheimer’s disease with positive
symptoms of psychosis125 and idiopathic late-onset
Parkinson’s disease.126 In contrast with these
disorders, there has been no strong evidence for
linkage on chromosome 8p in any of the genome-wide
linkage studies of autism.127,128 Only one linkage
analysis on multiplex autism families stratified
according to delayed expressive speech found
higher linkage signals in the delayed groups for
some loci on chromosome 8p.129

Given this linkage scenario, chromosome 8p should
be considered as a robust candidate for a suscept-
ibility region for schizophrenia especially with
clinical features that bring to mind the classical
dementia-praecox syndrome described by Emil
Kraepelin.130 In addition, there is suggestive evidence
for bipolar disorder with psychotic symptoms, major
depression with recurrent episodes and suicide
attempts, and specific anxiety-related personality
traits such as neuroticism and harm avoidance, but
insufficient evidence for other neuropsychiatric
phenotypes, including autism, Parkinson’s disease
and Alzheimer’s disease. It is noteworthy, therefore,
that the 8p arm appears to increase the probability
that several major neuropsychiatric disorders will
show higher levels of affective severity, suicidal
behavior, psychotic symptoms and poor outcome.
Some aspects of this clinical variability concur in part
with deficits in social cognition.119 Nevertheless, on
the basis of 8p linkage findings, at least some risk
genes affect, in part, the expression of specific
phenotypes across the nosological boundaries.

Studies of individual genes: association, gene
expression and endophenotype investigations
To our knowledge, there are 484 genes located on 8p
(for exhaustive and update information about their
localization and description—locus, bases, names, ID,
MIM, type and ontology: functions, processes and
components—see Supplementary Table S1 at Supple-
mentary Information section). In recent years, as
mentioned above, many studies have identified
several susceptibility genes for schizophrenia and
other neuropsychiatric disorders that are located on
chromosome 8p. Specifically, our electronic and
manual search identified 19 potential candidate genes
from association studies. Following the first recom-
mendation (broad view) proposed by Lohmueller
et al.131 to reduce false positive associations, we
consider those associations that have been replicated
at least once with an independent sample. Nine
genes located on 8p satisfy the criteria of Lohmueller
et al.131: DPYSL2, EGR3, FGF20, FZD3, LPL, NAT2,
NRG1, PPP3CC and VMAT1/SLC18A1. We also
consider the current state of evidence for 11 addi-
tional candidate genes that do not satisfy the
Lohmueller et al. criteria, but have a significant
association in only one study: ADRA1A, ARHGEF10,
CHRNA2, CHRNA6, CHRNB3, DKK4, FGFR1, NEF3,
PCM1, PLAT and SFRP1. Finally, we consider three
additional genes as other potential candidate genes on

8p chromosome from molecular genetics and cerebral
developmental studies: FGF17, hsa-mir-124-1 and
hsa-mir-320.
Table 2 summarizes the published findings about

8p genes in neuropsychiatric disorders, highlighting
results that show the relationship among this
candidate genes and a number of normal and
pathological conditions, such as neurodevelopmental
processes, gene expression in the CNS and in the
peripheral sources of patients, endophenotype inves-
tigations, experimental disease models and cancer
research.132–345 Other 14 genes located on 8p (ADRB3,
BIN3, CLU, CTSB, EPHX2, GNRH1, NAT1, NEFL,
PDLIM2, PEBP4, PIWIL2, PNOC, SLC39A14, SORBS3
and WRN) were investigated in at least one study that
did not show association with neuropsychiatric
disorders (see Ref.43,53,54).

A developmental animal model from 8p: potential
implications for autism, schizophrenia, affective
disorders and cancer

Numerous studies have reported that social cognition
impairments, especially deficits in theory of mind,
emotion perception and social perception, are a core
of autism and schizophrenia.346–348 Although the
molecular and cellular mechanisms underling social
cognitive deficits have not been clarified, recent
studies have linked social dysfunction changes in
rodents to neurodevelopmental abnormalities asso-
ciated with autism,349 depression and schizo-
phrenia,350 and Rett syndrome.351 More specifically,
genes involved in neurodevelopment are essential for
normal social behaviors. Fgf are particularly interest-
ing in this regard. Fgf genes encode a family of 22
signaling molecules, which signal through at least
four FGF receptors, play a central role in development
and in tissue homeostasis.158,159 Blocking Fgf receptor
signaling by expressing a dominant-negative Fgf1R
receptor during embryonic development resulted in
decreased cortical thickness.160 Expressing the domi-
nant-negative Fgf1R in dopamine neurons reduced
the number of dopamine neurons, increased dopa-
mine levels in the striatum and impaired prepulse
inhibition,352 changes which may have relevance to
the neuropathology and sensorimotor gating deficits
in schizophrenia.353,354 Moreover, FGF20 at 8p21.3-22
was identified as a risk factor for Parkinson’s
disease.161–164 Likewise, Murase & McKay168 showed,
in vitro experiments, that FGF signals (specifically,
FGF20 and FGFR1) to elevate dopamine levels and
protect the specific midbrain neuron type. Because
Parkinson’s disease is characterized by loss of
midbrain dopaminergic neurons, it is possible that
altered FGF-signaling might have permanent effects
on CNS function by the dopaminergic nigrostriatal
system.355,356

FGF-signaling defects are also linked to major
depression. Two recent postmortem analyses, showed
a reduction, on the one hand, of FGF members (FGF1,
FGF2, FGFR2 and FGFR3) in the frontal cortex of
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major depressed subjects compared with control and
bipolar subjects357 and, on the other, of FGFR2 in the
temporal cortex of major depressed subjects com-
pared with control,358 although this finding has been
challenged by the findings of a separate study using
prefrontal postmortem cortices.328 In this last study,
however, FGFR1 was upregulated in subjects with
major depression or suicide. FGFR1 was also ob-
served to be upregulated in hippocampus of subjects
with major depression when compared with con-
trols.329 The FGF system is also modulated by
psychotropic drugs, including fluoxetine, diazepam
and the atypical antipsychotic clozapine.359

FGF-signaling, through FGF8, FGF15, FGF17, has a
fundamental role in controlling the size of the frontal
cortex.340,341 Recently, we described a Fgf17"/" mutant
mice that showed a reduction in the size of dorsome-
dial prefrontal areas and a circumscribed set of higher
order social deficits, without affecting olfaction,
pheromone responses, aggression or an array of
nonsocial behaviors.50–52,360

In the analysis of the Fgf17/ mice, the authors used
a panel of gene expression markers to examine the
role of Fgf17 in the regionalization of the rodent FC.
They reported that the dorsal FC of Fgf17/ mice was
reduced in size, whereas ventral and orbital FC
regions appeared normal. Thus, in addition to an
overall effect on neocortical patterning, Fgf17 has an
unexpectedly selective role in regulating dorsal FC
development.50,51,360 The reduction in the dorsal FC
area was complemented by a rostromedial shift of
caudal cortical areas. These changes in regionaliza-
tion persisted into adulthood and were accompanied
by a reduction in FC projections to subcortical targets.
This reduction of prefrontal cortex output to striatal
or midbrain dopaminergic neurons may have impor-
tant physiologic ramifications for the regulation of
neural pathways involved in reward, cognition and
social behavior.361

It has long been known that dorsal and ventral
FC subdivisions have distinct roles in regulating
cognition and behavior in rodents and primates,
including humans.361,362 For example, subdivisions
of the dorsal prefrontal cortex are implicated in
working memory, attention, response selection,
temporal processing of information, effort-related
decision making and social valuation, whereas
ventromedial and orbital subdivisions are implicated
in behavioral flexibility, emotional regulation, delay-
related decision making, evaluation of rewards and
autonomic control.363 Therefore, the Fgf17/ mutant
mice provide an opportunity to examine the
behavioral and neurophysiologic consequences of an
early developmental genetic lesion that selectively
affects the dorsal FC. We propose that elucidating
the signaling pathways downstream of Fgf17 will
provide important insights into the genetic path-
ways that regulate FC development and that may
be disrupted in disorders that affect cognition,
emotion and social interactions, such as autism and
schizophrenia.

In addition, members of the fibroblast growth factor
family are significantly associated with a variety of
human cancers.169–171 For example, FGF17and FGFR1
are commonly overexpressed in advanced human
prostate cancer.364,365 It is noted that there is evidence
of a selective overexpression of FGFR1 and FGFR4 in
clinical prostate cancer, which specifically supports
the notion of targeted inhibition of these receptors to
disrupt FGF signaling.366 Moreover, fusions between
FGFR1 and several genes have been identified in the
hematologic malignancy 8p11 myeloproliferative
syndrome.367 Consequently, the above mentioned
relationship between certain types of cancer invol-
ving 8p and schizophrenia could be in part explained,
thanks to the potential function of FGF17/FGFR1 in
tumorigenesis and in cerebral development.

Discussion

Chromosome 8p is rich in genes that are implicated in
neuropsychiatric disorders. VMAT1/SLC18A1, NRG1,
PPP3CC and DPYSL2 are clearly associated with
schizophrenia and probably with bipolar disorder.
In addition, findings reveal that EGR3 (schizophrenia
or SZ), FGF20 (Parkinson’s Disease or PD), FGFR1
(SZ), LPL (Alzheimer’s Disease or AZ), NAT2 (PD) and
PCM1 (SZ) seem to be promising candidate genes as
well, while FZD3 (SZ, bipolar disorder or BD and
major depression or MD) and NAT1 (SZ, BD, PD and
AZ) mainly gave negative results (see Ref.55,65,66 and
Table 2). As discussed above, we suggest that
alterations in FGF17, hsa-mir-124-1 and hsa-mir-320
should be considered to endow susceptibility to
mental illness.
It is clearly premature to conclude that many of the

8p genes are connected to mental illness. Associa-
tions with mental illness and variants on ADRA1A,
ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4,
LDL, PLAT and SFRP1 are weak (based only in one
molecular genetics study) or contradictory (studies
with positive and negative results). In addition, meta-
analysis has only been performed on polymorphisms
of DPYSL2, FZD3, NRG1, PPP3CC, VMAT1/SLC18A1,
FGF20 and LPL, and many of these meta-analysis
results may represent false-positive findings, in
particular those based on small ( < 10) sample size.44

Despite the shortcomings of much of the evidence,
it is worth continuing positional and association
studies to scrutinize 8p, but using larger samples of
different ethnic populations and more stringent
criteria for replication or low P-values, focusing on
those findings that have been previously repli-
cated.131,368 Toward this goal, various genome-wide
association studies are being applied to identify and
characterize single-nucleotide polymorphisms in the
DNA of hundreds or thousands of people worldwide
with and without a particular disease or families with
schizophrenia279 or bipolar disorder.369 Likewise,
several genome-wide association studies have found
that other forms of genetic variation on 8p, beyond the
single-nucleotide scale, such as structural variations
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are associated with autism29 and schizophrenia10

among other disorders.370 Surely, these technologies
are revolutionizing the genetics of behavioral traits,
complex disorders or our individuality.368

Cancer and Schizophrenia: tumor-suppressor genes,
oncogenes and microRNAs

Tumor-suppressor genes and oncogenes on 8p. There
is considerable evidence that suggests mechanistic
connections of genes on 8p among certain types of
cancer and schizophrenia. It is biologically plausible
that specific tumor-suppressor genes on 8p, that are
downregulated in lung and prostate cancer, could be
upregulated in schizophrenia. This phenomenon has
been considered for various tumor-suppressor genes,
such as TP53 on 17p13,371 APC or adenomatous
polyposis coli on 5q21-22.372 and TGFBR2 or
transforming growth factor-b receptor on 3p22,
however in this last case with negative association
for 10 single-nucleotide polymorphisms in the
Japanese population.373

The tumor-suppressor TP53 gene has been identi-
fied as the most commonly mutated gene in human
neoplasms.374 The p53 tumor-suppressor protein
regulates the cell cycle, checkpoint control, repair of
DNA damage and apoptosis,375,376 and several devel-
opmental processes, including cerebral vasculariza-
tion,377 neurogenesis and neural crest migration.378

Independent genetic evidence for TP53 as a schizo-
phrenia susceptibility gene is strong, with five of six
studies reporting significant association.379–383 Geno-
type and allele frequencies at MspI polymorphisms of
TP53 are likewise significantly different between
Korean schizophrenia and lung cancer subjects.371

TP53 activates the transcription of PTEN (tumor-
suppressor phosphatase with tensin homology), and
therefore functions as a negative regulator of the
entire phosphatidylinositol-3-kinase (PI3K)-AKT sig-
naling pathway that drives tumorigenesis384 and
many critical signaling systems involved in neural
development, survival and plasticity.385 The inap-
propriate inhibition of PI3K-AKT pathway has been
associated with diseases as diverse as diabetes and
schizophrenia.386,387 Deregulation of PTEN function is
also implicated in autism and brain tumors.388,389 It is
noted that the NQO1 enzyme protects against oxida-
tive stress and carcinogenesis, including stabilization
of TP53.390 NQO1*2 is a missense variant
(NP_000894:p.187P>S) that predicts poor survival
among women with breast cancer mediated, in part,
by TP53-linked roles of NQO1.391 Even more interest-
ingly, one study suggests an increased risk for tardive
dyskinesia in schizophrenic NQO1*2 carriers.392

Nevertheless, other studies failed in finding this
association.393,394

Defects in tumor-suppressor APC gene, which is
associated with colon and other cancers,395,396 are also
associated with susceptibility to schizophrenia;
furthermore, APC is upregulated in patients with
schizophrenia.372 APC is a key component of the Wnt/

Winless signaling transduction pathway, which plays
important roles in a number of developmental
processes and in tumorigenesis.171,397 Thus, there
may be a relationship between the functions of these
tumor suppressors and the molecular mechanisms
and cellular biology underlying schizophrenia.
Unfortunately, almost nothing is known about the

role of 8p tumor suppressors in schizophrenia or
other neuropsychiatric disorders. On the other hand,
there are many putative mental illness susceptibility
genes on 8p (ADRA1A, ARHGEF10, CHRNA2,
CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17,
FGF20, FGFR1, FZD3, LDL mir-124-1, mir-320, NAT2,
NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and
VMAT1/SLC18A1) involved in both cancer and
neuropsychiatric disorders’ biology (see Table 1 and
TS1 at Supplementary Information). NRG1, without a
doubt, is one of the most frequently studied genes in
schizophrenia (see Table 2).237,398 Over the course of
last two decades, numerous investigators have tried to
unravel the biological function of the NRG1 and of
other related molecules (that is, of its receptors, the
Epidermal Growth Factor Receptor/ErbB family of
proto-oncogenes which signal in part through PI3K-
AKT-PTEN) in the human brain and cancer.399 These
genes have critical functions in many aspects of
neural development and function.247 Furthermore,
overexpression of NRG1 is found in many different
cancer types and correlates with cancer progression
and an aggressive phenotype,260 where it may regulate
tumor-suppressor genes and/or genes that control cell
differentiation or apoptosis.261 Another attractive
hypothesis is that the NRG1 locus is broken in several
types of epithelial cancers, such as breast, pancreatic
or colon cancer.400 It is possible that most of these
breaks represent chromosome translocations, but
accompanied by variable amplifications, deletions
and inversions proximal to these breakpoints.401

The breakage of NRG1 might have many complex
effects, because there are multiple splice forms
of NRG1 with different activities. In this regard, Tan
et al.402 suggest that genetic regulation of NRG1 type
IV isoform may have the dual effect of both protecting
against cancer while increasing the risk for schizo-
phrenia. Therefore, the schizophrenia risk-associated
single-nucleotide polymorphism, rs6994992, which
is a functional promoter variant associated with
schizophrenia genetic predisposition and NRG1 type
IV expression,403 might be as a negative regulator
of tumorigenesis. Subsequently, Kanakry et al.404

using a B lymphoblast cell model, showed that
NRG1 regulates cell adhesion by ErbB2/PI3K-AKT
pathways. The cell lines derived from patients with
schizophrenia showed a deficiency in NR1a-induced
adhesion, suggesting a cellular phenotype that could
contribute to disease risk. Nevertheless, evidence for
a cosegregation of cancer with susceptibility or
protective NRG1 variants for specific neuropsychia-
tric disorders has not been reported; this would
be more persuasive evidence for the link between
these disorders.
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miRNAs on 8p. miRNAs play critical roles in the
regulation of gene expression by translational or post
translational mechanisms, and influence human
genetic variation and normal development.55 miRNA
expression can be dysregulated in tumor
cells.171,405,406 Lujambio et al.407 have observed that
DNA hypomethylation induces a loss of miRNA
expression in cancer cells, such as the 8p brain-
specific miRNA miR-124a. The authors functionally
linked the epigenetic loss of miRNA-124a expression
with the activation of oncogenes (CDK6 (cyclin D
kinase 6)) and tumor-suppressor genes (Rb
(retinoblastoma)). Moreover, miRNA-124a may be
also deregulated in subjects with acute myeloid
leukemia.408 Most recently, Silber et al.409 have
shown that miRNA-124 and miRNA-137 can induce
neuronal differentiation of oligodendroglioma tumor
stem cells and glioblastoma multiforme (GBM) stem
cells, and inhibit proliferation of GBM cell lines
suggesting an anticancer effect of these miRNAs.
miR-320 is also located at 8p; its altered expression in
human cholangiocarcinoma cell lines may contri-
bute to cholangiocyte-specific responses to chemo-
therapy.410 In patients with cytogenetically normal
acute myeloid leukemia, Marcucci et al.411 found an
altered expression of 12 miRNAs (including miR-124a
and miR-320) that was associated with clinical
outcome in a subgroup of patients with high-risk
acute myeloid leukemia. Interestingly, the methyl-
CpG-binding domain (MBD) proteins (MBD1, MBD2,
MBD3, MBD4 and MeCP2) are critical mediators of
DNA methylation-regulated epigenetic processes.
The MBD family proteins are associated with
tumorigenesis and drug resistance. Mutations in
MBD2 and MeCP2 genes are likewise implicated in a
number of related but distinct postnatal
neurodevelopmental disorders, including X-linked
mental retardation disorders, autism and Rett
syndrome,412–415 and are putative targets for miR-
124a and miR-320 predicted by computational
analysis.416 Thus, miRNAs may provide a homeo-
static mechanism for maintaining MBD2 and MeCP2
levels. It is noted that using this database of predicted
miRNA target genes, we have identified new putative
targets for miR-124a (FMR1 or fragile X-linked mental
retardation) and miR-320 (NLGN3 or neuroligin3;
AUTS2 or autism susceptibility candidate 2; A2BP1
or ataxin 2-binding protein 1, also called FOX1),
which are associated with autism, schizophrenia and
related syndromes.417 The function of some of these
genes is presently unknown (AUTS2). Others are
important in glutamatergic synapse function and/or
in neuronal cell adhesion (FMR1 and NLGN3),
neuronal activity regulation (FMR1 and A2BP1) and
in endosomal trafficking (A2BP1).

miRNAs expression is the subject of considerable
interest in schizophrenia.418–423 Very little is known
about the role of miRNAs in autism; however, current
findings suggest that alterations in the interactions
between miRNAs and their mRNA targets may
contribute to autism phenotypic variation.424–426 For

instance, Abu-Elneel et al.426 found that miRNA-320
(at 8p21.3) and miRNA-598 (at 8p23.1) are dysregu-
lated in postmortem cerebellar cortex from 13 indi-
viduals with autism spectrum disorders compared
with nonautism controls.

Conclusions and future directions

Although many questions remain unanswered,427 the
research should focus on common or related path-
ways, or processes that potentially represent a point
of convergence for molecular signaling not only
among schizophrenia, autism or other neuropsychia-
tric disorders, but also with cancer. Compared with
classical approaches, focusing on a group of genes
belonging to the same functional pathway or that
operates together as a network could yield the best
results. The cross-sectional dimension raises the
possibility that shared components of the schizo-
phrenia/cancer phenotype, or other common human
diseases, might be used to distinguish genetic and
molecular pathways in these severe disorders. Con-
sistent with this idea, analysis of the genes within
chromosome 8p represents a rich resource to under-
stand the biological connections among disorders that
are considered to be distinct.
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346 Happè F. An advanced test of theory of mind: understanding of
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